

SiW ECAL + sDHCAL dimension-performance optimisation

Trong Hieu TRAN Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3

- Introduction
- ILD with reduced radius
- Preliminary
 - tracking & ECAL performances for single particles,
 - jet energy resolution
- Cross checks

LCWS 2013, University of Tokyo, Japan

Introduction

Motivation

◆ ILD is costly, especially SiW-ECAL & Yoke.

Options:

- Reduce ECAL number of layers (reported at LCWS12 & in DBD)
- outer TPC radius (\rightarrow ECAL, sDHCAL, Yoke's radii correspondingly) together with

length (keep ratio constant) similar study done for SiW-ECAL + AHCAL(M. Thomson @ LoI and recently by J. Marshall *)

change B-field

Validation of ILD models

- Simulation done with Mokka (Geant4).
- Tracking performance (important input for PFA, since 60% of jet energy from charged particles)
- PFA performance: With recent PandoraPFANew

(*) ECAL simulation meeting

Parameters

Unit: mm							
R_{ECAL}^{inner}	1843	1600	1400	1200			
R_{TPC}^{outer}	1808	1565	1365	1165			
TPC half_Z	2350	2040	1785	1530			
TPC half Z = R_{ECAl} inner × 2350/1843							

- ★ When mention: R_{ECAL}^{inner} means that the whole ILD detector model is reduced
- ★ For all models, ECAL, HCAL have same thickness as in baseline design
- ★ Same B-field (3.5 Tesla), sensor size (5×5 mm² for SiW ECAL and 10×10 mm² for sDHCAL)
- ★ SiW ECAL has 30 layers (29 Si layers)

Samples & calibration procedure

Muon's, gamma's, K⁰_L

Energies: 1, 3, 5, 7, 10, 15, 20 – 100 GeV (step 10GeV) 10k events for each sample For energy correction in function of $\cos\theta$: 100K events (gamma's, K_{L}^{0}) Jet: e⁺e⁻ \rightarrow Z \rightarrow qqbar (uds), energies: 91, 200, 360, 500 GeV

- Calibrations are done in following steps:
 - 1. ECAL & HCAL calibration: conversion of deposited charge to energy
 - 2. Pandora weights to EM and HAD energy
 - 3. Angular correction of energy for neutral particles & photons

ECAL + HCAL calibration. Step 1.

- Based on single particles
- EM calibration coefficients are adjusted from default value for every radii within 1.5%
- Hadron calibration at calorimeter energy level is fixed which was determined for sDHCAL prototype using 3-threshold mode: 0.114, 1.39 and 3.65 pC (cf. A. Steen's talk on sDHCAL performance)

Energy resolution for gamma

 γ energy resolution vs Radius

 \rightarrow no changes in resolution for single photon events

Hadron calibration: parameter scan. Step 2.

- Two calibration constants within Pandora: weights to energy deposites in ECAL and HCAL which belong to hadronic shower
- Set of parameters are chosen so that:
 - ◆ Jet energy resolution is as small as possible (for all energies)
 - mean value as closed to reality as possible
- Scan based on single jet energy resolution $\sigma_{\rm F}/{\rm E}^{~(*)}$

Hadron calibration: parameter scan (cont.)

Scan results show that:

- EM scale should be increased by 20%
- HAD scale should be increased by 5%

Hadron calibration: parameter scan (cont.)

Angular energy correction. Step 3.

Mean value of energy shows a significant dependence on polar angle, especially for lower value of radius: due to gap between modules (ECAL+HCAL), alveolar structures (ECAL), ...

Mip calibration: muon's at 10 GeV

- Mip calibration: how energy in calorimeters are translated in to MIP energy
- Controlled by equivalent number of mips per cell for each event

Double-peak structure for ECAL mip due to two sections with different sampling fractions

Very small difference in MIP calibration between different radii. (Fluctuation.)

Single particle resolution: muon's

Momentum resolution of muons' at different energies for different radii.

Degradation by, e.g., 40% for muons' at 50 GeV.

Or in terms of resolution of $1/\text{P}_{_{\rm T}}$ of track.

Degradation in $1/P_{T}$ resolution by

~60% from radius 1843 to 1400 mm.

<u>Performance:</u> Jet energy resolution

Jet energy resolution vs Radius

SiW ECAL: 5×5 mm², AHCAL: 3×3 cm², sDHCAL: 1×1 cm²

Jet energy resolution vs E_{jet}

- At low energy, JER is dominated by intrinsic calorimeter resolution – mainly HCAL (1/sqrt(E))
- At higher energy (250GeV) confusion term dominates
 - → JER increases
- R=1200 mm does not seem to be a good option

Further cross-checks

- DHCAL in analog mode
- Effect of tracking on PFA performance
- Magnetic field

Change of B-field

- ILD with Ecal inner radius at 1.4 m is chosen for the study
- Change default B field (3.5 T) by a factor of 0.9, 1.1, 1.2 and 1.3 → 3.15, 3.85, 4.20 and 4.55 T

Effect of tracking on JER

- Tracking performance degrades for small radii → effect on PFA performance need to be checked
- Use MC truth tracks as input for PandoraPFA
- Slight difference observed but not dramatic

DHCAL in analog mode

- Take energy as proportional to deposited charge (like AHCAL) in gas
- Recalibration:
 - Conversion factor (charge \rightarrow energy)
 - Scanning also performed

• However minimum of JER is ~4.18, far from what given with digital mode (hit counting)

Summary

- Performance SiW-ECAL and sDHCAL for different radii studied in Mokka and Pandora
- Calibration was performed for every radii
 - for single particles
 - internal Pandora weights to Hadronic & electromagnetic components (2-dimension scan)
- If choose to reduce radius from 1.8 to 1.4m, JER increases:

R _{ECAL} (mm)	E _{jet} (GeV)				
	45	100	180	250	
1843	3.85	3.01	2.97	3.06	
1400	4.14	3.35	3.39	3.64	

However,

- we should mention that potential of high granularity is still not fully explored
- we may allow degradation but we gain in price as a function of R² !
- Several cross-checks have been done:
 - Effect of tracking: negligible to JER
 - Magnetic field: small effect for highest energy jets
 - DHCAL in analog mode: hit counting seems better than energy counting
- Future plan:
 - extend study with 1.4 m for Ecal inner radius and with 19 Si layers
 - add jet energy point at 62 GeV (in progress, some features not fully understood)

Backup slides

Dependence of energy on $\cos\Theta$

Large dependence on costheta

Kaon OL in jets

Had calibration

Procedure: Chi2 method sum of energy in calo = Ecal Energy + (N₁ t₁ + N₂ t₂ + N₂ t₂) χ² = Σ (E_{rec} - E_{sim})² /E_{sim}

 t_i : thresholds N_i: nb of hits corresponding to threshold t_i

Pandora hadronic parameter scan

Pandora hadronic parameter scan

Comparison PFO energy & hit energy. Photons' at 10GeV

Energy correction vs $\cos\theta$

- Difference of reconstructed and generated photon polar angle.
- Average is less than 1mrad
- \rightarrow safe enough to do a correction in function of $\cos\theta$

ILD layout

Half-Z reduction

Hit Z distribution