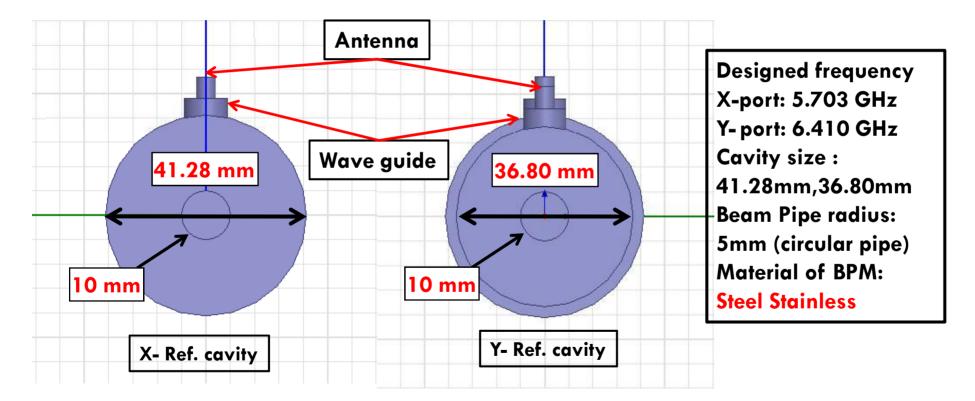
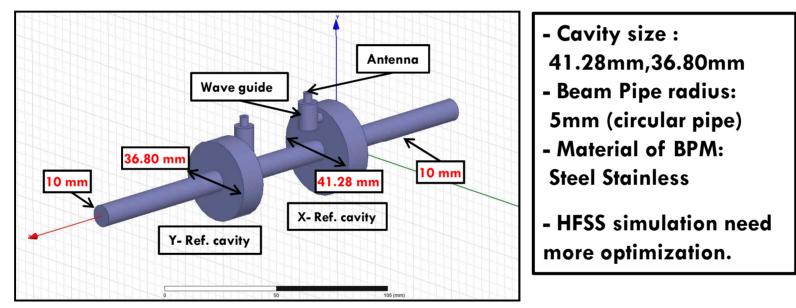
REFERENCE CAVITY BPM FOR LOW-Q IP-BPM


Siwon Jang (KNU)

Current issue for Ref. cavity BPM

- Install location of Ref. cavity BPM
 - Wake field effect due to narrow beam pipe (6mm x12mm)
 - More similar decay time was need (below ~30ns)
 - Frequency tuning problem
- To solve these problems, Ref. cavity BPM design was modified.
 - Main modified point was material of Ref. cavity BPM
 - Material was changed Copper to Steel stainless


Reference cavity BPM design

Reference cavity BPM drawings of HFSS

Reference cavity BPM design

Cavity shape for HFSS simulation

Port	f _o (GHz)	β	Q _o	Q _{ext}	QL	τ (ns)
X-port	5.7034	0.0208	1164.43	55915.7	1140.68	31.83
Y-port	6.4100	0.0327	1203.61	36765.1	1165.46	28.94

Further works for Low-Q IP-BPM

- How to do frequency tuning for SUS Ref. cavity BPM
 Because, SUS material shape can't changed easily.
- Ref. cavity BPM wake field effects estimation
- Simulation of DAQ with 100MHz digitizer (SIS3301) and integrated ADCs
 - Now, we are on the preparation to buy more higher sampling frequency ADC digitizer for 250MHz, it corresponding to 1sample/4ns sampling speed.