

輻射シーソー模型での ヒッグスインフレーションとそのILCでの検証

松井俊憲(富山大学)

共同研究者:兼村晋哉、鍋島偉宏

S.Kanemura, T.Matsui, T.Nabeshima, Phys. Lett. B 723, 126(2013)

ILC夏の合宿2013

BIG-BANG HIGGS-INFLATION EXTENTION & RESULT PHENOMENOLOGY

[スローロールインフレーション]:インフラトンと呼ばれるスカラー粒子 (で説明される。

↓典型的なポテンシャル

Linde(1981)

2. ヒッグスインフレーションシナリオ

最小模型 "The Standard Model Higgs boson as the inflaton" →ヒッグス場と重力の結合項を導入する。

F. L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008)

最小模型での問題点

真空安定性の問題

- 結合定数λは、エネルギースケールμに依存する。
- ・繰り込み群方程式を計算すると結合定数のエネルギー依存性が得られる。

- このシナリオの枠組みで、インフレーションを同時に説明する。
- ・ 付加的なスカラーボソンの効果で、真空安定性を解決できる。
- 真空安定性を満たし、スローロール条件と暗黒物質の残存量・直接検出 実験、ニュートリノ振動実験が説明できるパラメーター領域を発見した。

⇒特徴的な質量スペクトル $m_h = 126 \text{GeV}$ 128 GeV $\leq m_A \leq 138 \text{GeV}$ $m_H \simeq m_A$ $m_{H^{\pm}} \simeq m_A + 40 \text{GeV}$

LHCでの検証

E.Dolle, X.Miao, S.Su, B.Thomas, PRD81, 035003(2010)

- ・LHCでの優勢な過程は、AH生成。
- ・この文献では、AとHの質量差を [100, 70, 50, 10]GeVにとっている。

 $pp \rightarrow Z^* \rightarrow AH \rightarrow HHZ^* \rightarrow HH\ell^+\ell^-$

- ・結果では、質量差が小さいとき断面積はトータルの 標準模型バックグラウンドに対して非常に小さくなる。
- ・我々のシナリオでは、HとAの質量差は<u>ほとんど縮退</u>しているのでLHCで検証するのは難しいといえる。

ILCでの検証

 $\sqrt{s} = 500 \text{GeV}$

また、H[±]が検出できAH生成が検出できなかったら、AとHの質量はほとんど同じであると理解できる。 $m_H \simeq m_A$

ILC夏の合宿2013

- ヒッグスインフレーションの最小模型では、
 真空安定性を満たすことが難しい。
- ・輻射シーソーの枠組みでは、ニュートリノ質量、
 ・ ・暗黒物質だけでなく、インフレーションも同時に
 説明することが可能である。
- このシナリオの特徴的な質量スペクトルは、
 ILCで検証することができる。

BIG-BANG HIGGS-INFLATION EXTENTION & RESULT PHENOMENOLOGY

Back Up

The Standard Model Higgs boson as the inflaton

F. L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703(2008)

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{M_P^2}{2}R - \xi H^{\dagger} H R$$

$$\equiv \mathcal{L}_{SM} - \frac{1}{2}M_P^2 \Omega(h)^2 R \qquad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\h+v \end{pmatrix} \qquad \Omega^2 = 1 + \frac{\xi h^2}{M_P^2} M_P^2 \Omega(h)^2 R$$

Conformal translation: $g^{E}_{\mu\nu} = \Omega^2 g^{J}_{\mu\nu}$

$$\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2 / M_P^2}{\Omega^4}} \qquad \qquad U(\chi) = \frac{1}{\Omega(\chi)^4} \frac{\lambda}{4} (h(\chi)^2 - v^2)^2$$

Fig. 1. Marginalized joint 68% and 95% CL regions for n_s and $r_{0.002}$ from *Planck* in combination with other data sets compared to the theoretical predictions of selected inflationary models.

(※)ユニタリティーの問題

C.P.Burgess et al., JHEP 0909, 103(2009)

プランクスケールまでにユニタリティーが破れる: Λ[~]m_p/ξ; ξ=O(10⁴)

The result of unitality prablem

G.F.Giudice, H.M.Lee, Phys.Lett.B 694, 294(2011)

Introducing singlet scalar field σ

 \Rightarrow We can explain until inflation scale.

Vacuum stability of Two Higgs Doublet Model

S.Kanemura, T.Kasai, Y.Okada, PLB471, 182(1999)

イナートニ重項模型での場合

N. G. Deshpande, E. Ma, Phys. Rev. D 18, 2574(1978)

輻射シーソー模型

$$\frac{(Y_{\nu})_i^k (Y_{\nu})_j^k}{M_R^k} \simeq \mathscr{O}(10^{-7}) \text{GeV}$$

$$M_R^k \simeq \mathscr{O}(10^3) \text{GeV} \Rightarrow (Y_\nu)_i^k \simeq \mathscr{O}(10^{-2})$$
$$M_R^k \simeq \mathscr{O}(10^7) \text{GeV} \Rightarrow (Y_\nu)_i^k \simeq \mathscr{O}(1)$$

暗黒物質からの制限

•DM直接検出実験 XENON100, PRL109, 181301(2012)

K.Inoue et al., Prog. Theor. Phys. 63, 234(1980)

制限を満たす特徴的な質量スペクトル

繰り込み群方程式の解析結果

	10 ² GeV	10 ¹⁷ GeV							
λ_1	0.26	1.6							
λ_2	0.35	6.3							
λ_3	0.51	6.3							
λ_4	-0.51	-3.2							
λ_5	1.0×10 ⁻⁶	1.2×10 ⁻⁶							
	所日ハ	_ I •							

2013年7月20日

Testability at the LHC $\sqrt{s} = 14$ TeV													
	Benchmark	m_h (Ge	V) m_A (GeV) δ_1 ((GeV)	δ_2 (Ge	V)	λ_L	pp -	$\rightarrow Z \rightarrow AH$	$\rightarrow HHZ^*$	$\rightarrow HH\ell \ell$	
LH1 150 LH2 120 LH3 120			40]	100	100	-	-0.275			$\leq P_{(*)}$ H	ominant proc	P22
			40		70	70		-0.15				onniane proc	.000
			82	50		50		-0.20		/ / / / / / / / / / / / / / / / / / / /	ℓ^+		
	LH4	120	73		10	50		0.0			``\		
ļ	LH5	120	79		50	(10		-0.18	\bar{q}'		` H		
($\delta_1 \equiv m_{H^{\pm}} -$	m_{Λ}		Le	vel I C	uts	Lev	el I+II	Cuts	SM	Level I Cuts	Level I+II Cuts	
8	$\tilde{b}_2 \equiv m_H^{-} - 1$	m_A^{\uparrow}	Benchmark	σ_{AH}	$\sigma_{H^+H^-}$	σ_{hZ}	σ_{AH}	$\sigma_{H^+H^-}$	σ_{hZ}	Backgrounds	σ_{BG}	σ_{BG}	
λ	$\lambda_L \equiv \lambda_3 + \lambda_4$	$_{4} + \lambda_{5}$		(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	0	(fb)	(fb)	
			LH1	9.61	0.82	2.90	6.03	0.46	1.79	WW	621.44	316.97	
			LH2	10.28	1.06	5.75	6.53	0.51	3.47	ZZ/γ^*	132.09	76.46	
L			LH3	2.32	0.34	0.01	1.47	0.13	0.01	$tar{t}$	4531.51	58.87	
V			LH4	3.84	0.19	0	2.07	0.02	0	WZ/γ^*	113.97	51.85	
	Level I Cut	<u>ts</u>	LH5	0.38	~ 0	0.01	~ 0	0.14	0.01	Wt	709.14	52.11	
	• Exactly two electrons or muons with opposite charge. • $p_T^{\ell} \ge 15 \text{ GeV}$ and $ \eta_{\ell} \le 2.5$ for each of these charged leptons. Total SM Background 6108.15 556.26												
• For lepton isolation, we require $\Delta R_{\ell\ell} \ge 0.4$ for the charged-lepton pair, and $\Delta R_{\ell j} \ge $ 0.4 for each combination of one jet and one charged lepton. E.Dolle, X.Miao, S.Su, B.Thomas, PRD81, 035003(2010)													
	Level I Cuts Because the masses of H and A												
	• No jets wit	th $p_T^j > 2$	0 GeV and p	seudora	apidity	within	the ra	nge $ \eta_j $	< 3.0.	degenera	ate, it is dif	ficult to test	
	• $\not\!\!\!E_T > 30 \text{ G}$	eV.								at the LH	С.		J

Testability at the LHC $\sqrt{s} = 14 \text{TeV}$ $L = 100 \text{fb}^{-1}$

E.Dolle, X.Miao, S.Su, B.Thomas, PRD81, 035003(2010)

	Level III Cuts										
Benchmark	σ_{SA}	$\sigma_{H^+H^-}$	σ_{hZ}	σ_{WW}	σ_{ZZ/γ^*}	$\sigma_{t ar{t}}$	σ_{WZ/γ^*}	σ_{Wt}	$\sigma_{ m BG}^{ m comb}$	S/B	S/\sqrt{B}
	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)		
LH1	3.42	0.04	1.28	11.59	36.99	4.55	19.52	3.82	77.79	0.04	3.87
LH2	0.89	~ 0	0.01	0.07	0.24	0.11	0.08	0.07	0.58	1.53	11.66
LH3	0.18	~ 0	~ 0	0.03	0.15	0.05	0.04	0.06	0.34	0.52	3.04
LH4	0.19	~ 0	0	0.03	0.15	0.05	0.04	0.06	0.34	0.57	3.29
LH5	0.004	~ 0	~ 0	0.13	0.04	~ 0	0.04	0.01	0.23	0.02	0.02

Level III Cuts

E	enchmark	$M_{\ell\ell}^{\min}$	$M_{\ell\ell}^{ m max}$	$\Delta R_{\ell\ell}^{ m max}$	$\cos \phi_{\ell\ell}^{ m min}$	H_T^{\min}	${\not\!\! E}_T^{\min}$	$p_{T\ell}^{ m max}$
	LH1	80 GeV	$100 {\rm GeV}$	—	_	$150 { m ~GeV}$	$50 {\rm GeV}$	_
	LH2	_	$70 {\rm GeV}$	1.2	0.7	$200 {\rm GeV}$	$100 {\rm GeV}$	_
	LH3	$20 \mathrm{GeV}$	$50 { m GeV}$	0.8	0.7	$200 {\rm GeV}$	$90 {\rm GeV}$	_
	LH4	$20 {\rm GeV}$	$50 { m GeV}$	0.8	0.7	$200 {\rm GeV}$	$90 {\rm GeV}$	_
	LH5	—	10 GeV	0.6	0.9	—	$30 \mathrm{GeV}$	$25 \mathrm{GeV}$

Testability at the LHC $\sqrt{s} = 14 \text{TeV}$ $L = 300 \text{fb}^{-1}$

Q.H.Cao, E.Ma, G.Rajasekaran, PRD76,095011(2007)

 $pp \rightarrow Z^* \rightarrow AH \rightarrow HHZ^* \rightarrow HH\ell^+\ell^-$

 $15 \text{ GeV} \le P_T^{\ell} \le 40 \text{ GeV} \quad |\eta^{\ell} \le 3.0|$

 $\cos \theta_{\ell\ell} \ge 0.9 \quad \cos \phi_{\ell\ell} \ge 0.9$ $E_{Tmiss} \le 60 \text{ GeV} \ m_{\ell\ell} \le 10 \text{ GeV}$

BKGD	basic	optimal	$m_{\ell\ell} < 10{\rm GeV}$		
WW	$1.1 imes 10^5$	110	62		
ZZ	$2.1 imes 10^4$	3	0		
total	$1.3 imes10^5$	113	62		
Signal	haria	optimal	$m_{\rm H} < 10 {\rm GeV}$		
$\left(m_{H^0},m_{A^0} ight)$	Dasic	opuma	$m_{\ell\ell} < 10 \text{GeV}$		
(50, 60)	117	37	37		
S/B	$9 imes 10^{-4}$	0.33	0.60		
S/\sqrt{B}	0.32	3.48	4.70		
(50, 70)	433	56	50		
S/B	$3.3 imes10^{-3}$	0.50	0.81		
S/\sqrt{B}	1.20	5.27	6.35		
(50, 80)	680	38	26		
S/B	$5.2 imes 10^{-3}$	0.34	0.42		
S/\sqrt{B}	S/\sqrt{B} 1.89		3.3		

LEP bound

Our parameter consistent with LEP bound

ILC夏の合宿2013

崩壊分岐比、ヒッグス3点結合

崩壊分岐比 h→γγ

$$\frac{BR(h_1 \to \gamma \gamma)}{BR(h_{\#^{\#} \#^{\#}} \to \gamma \gamma)} = \frac{|F_1(\tau_w) + 3(\frac{2}{3})^2 F_{1/2}(\tau_t) + \frac{\lambda_3 v^2}{2m_{H^{\pm}}^2} F_0(\tau_{m_{H^{\pm}}})|^2}{|F_1(\tau_w) + 3(\frac{2}{3})^2 F_{1/2}(\tau_t)|^2}$$
$$\implies \sim 95\%$$

$$F_{1} = \frac{2\tau_{i}^{2} + 3\tau_{i} + 3(2\tau_{i} - 1)f(\tau_{i})}{\tau_{i}^{2}} \quad F_{1/2} = -\frac{2[\tau_{i} + (\tau_{i} - 1)f(\tau_{i})]}{\tau_{i}^{2}} \quad F_{0} = \frac{\tau_{i} - f(\tau_{i})}{\tau_{i}^{2}}$$

$$f(\tau_{i}) = \begin{cases} arcsin^{2}\sqrt{\tau_{i}} & \tau_{i} \leq 1 \\ -\frac{1}{4}[log\frac{1 + \sqrt{1 - \tau_{i}^{-1}}}{1 - \sqrt{1 - \tau_{i}^{-1}}} - i\pi]^{2} & \tau_{i} > 1 \end{cases} \quad i = W, t, H^{\pm}$$

P.Posch, Phys. Lett. B **558**, 157(2003)

新ヒッグス勉強会 第四回定例会

$$\lambda_{hhh}$$

$$\frac{\Delta \lambda_{hhh}^{2HDM}}{\lambda_{hhh}^{SM}} = \frac{\lambda_{hhh}^{2HDM} - \lambda_{hhh}^{SM}}{\lambda_{hhh}^{SM}} \sim 0.01$$

m_t=173GeV, m_h~126GeV, m_h~130GeV, m_A~m_H~130GeV, m_H~173GeV

$$\lambda_{hhh}^{SM} = \frac{3m_h^2}{\nu} \left(1 - \frac{m_t^4}{\pi^2 m_h^2 \nu^2} \right)$$

$$\begin{split} \lambda_{hhh}^{2HDM} &= \frac{3m_h^2}{\nu} \bigg(1 - \frac{m_t^4}{\pi^2 m_h^2 \nu^2} \\ &+ \frac{m_H^4}{12\pi^2 m_h^2 \nu^2} + \frac{m_A^4}{12\pi^2 m_h^2 \nu^2} + \frac{m_H^4}{6\pi^2 m_h^2 \nu^2} \bigg) \end{split}$$