Detector requirements from physics: Higgs

Taikan Suehara Tohoku University

Higgs is a key to TeV world

GeV world where SM is dominant

Fermion mass generation by Yukawa coupling

Electroweak symmetry breaking

"The last fundamental piece unproved in Standard Model" H

Higgs boson

Vacuum condensation & hhh coupling TeV world where SM is just a perturbation

Higgs issues

- Naturalness
- Composite Higgs?
- Multiple Higgs?

BSM (SUSY?) Dark

Matter?

/Baryogenesi<u>s?</u>

Higgs and BSM theories

Typical samples: real deviation of course varied by model parameters

~1 % measurement of coupling desired 3

Higgs physics program: revisited

target	process	CME	δ(stat)	detector challenge
σ _{ZH}	llh	250	2.6%	track momentum, beam spectrum
		500	4.8%	
	qqh	250	yet	W/Z separation, b-tag, jet charge
		500	3.9%	
BR	h->bb	250	1.0%	b-tag
	h->cc	250	6.9%	c-tag
Width	h->ZZ*	250	19%	W/Z separation, b-tag, jet charge
rare	tth 500 1000	35%	b-tag, jet energy, jet charge	
		1000	8%	
	Zhh /	500	88%	
	vvhh	1000	21%	

global fit

Snowmass energy frontier report

Model independent

Facility		ILC		ILC(LumiUp)
$\sqrt{s} \; (\text{GeV})$	250	500	1000	250/500/1000
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	250	+500	+1000	1150 + 1600 + 2500
$P(e^-, e^+)$	(-0.8, +0.3)	(-0.8, +0.3)	(-0.8, +0.2)	(same)
Γ_H	11%	5.9%	5.6%	2.7%
$BR_{ m inv}$	< 0.69%	< 0.69%	< 0.69%	< 0.32%
κ_γ	18%	8.4%	4.1%	2.4%
κ_g	6.4%	2.4%	1.8%	0.93%
κ_W	4.8%	1.4%	1.4%	0.65%
κ_Z	1.3%	1.3%	1.3%	0.61%
κ_{μ}		_	16%	10%
$\kappa_{ au}$	5.7%	2.4%	1.9%	0.99%
κ_c	6.8%	2.9%	2.0%	1.1%
κ_b	5.3%	1.8%	1.5%	0.74%
κ_t	_	14%	3.2%	2.0%

Taikan Sueha limited by σ_{ZH} @ 250 GeV

page 5

Detector-related performance drivers

- Momentum resolution keep current?
- ISR tagging not studied yet
- Lower material brems in eehbut effect is minor?

qq recoil

- Dedicated to absolute cross section meas.
 - hope to improve σ_{ZH} greatly
- > 10 x statistics compared to Ilh
- Less model independent efficiency affected more on Higgs final state
 Smaller effects also exist in Ilh – to be checked

• 250 GeV yet to be done, 350/500 done (preliminary)

qq recoil

- Strategy
 - Fixed y (Durham) or R (k_T) clustering
 - Select combination using Z mass
 b-tag / c-tag / jet charge may be usable
 - Apply several cuts to Z/recoil to separate WW/ZZ
 - Calculate recoil
- Detector requirement
 - Jet energy resolution (W/Z separation, recoil)
 - flavor tagging / jet charge (minor)

h→bb, cc, gg

- main processes to determine Yukawa coupling of Higgs
 - $-h \rightarrow bb$: great accuracy expected (<< 1%)
 - maybe limited by b-mass accuracy
 - systematic errors should be carefully investigated
 - $-h \rightarrow cc$: not possible at all in LHC
 - $-h \rightarrow$ gg: not possible directly in LHC
 - But cannot separate from u/d/s quarks in ILC
- Performance depends almost exclusively on flavor tagging – good benchmark

Actually complicated – depends on vertex finding efficiency, b-c separation efficiency with optimization of algorithm Some difference in c-tag, less apparent in b-tag Taikan Suehara, ILD workshop @ Krakow, 25 Sep. 2013 page 11

Zhh, tth

huge background of tt
many jets in final states
→ very high purity b-tag
is essential

 \rightarrow jet clustering

Zhh 500 GeV, m_h=120 GeV

Decay mode	BR.	# events in 2 ab ⁻¹
qqbbbb	32%	146
vvbbbb	9%	42
qqbbWW*->qqbbqqqq	6%	28
tt -> bbqqqq		~800,000
ZZZ, ZZH -> qqbbbb		~600

Cut	leptonic	semileptonic	hadronic	$tth \rightarrow other$	tťZ	ttbb	tt	$\frac{S}{\sqrt{S+B}}$
Total Events	151.4	628.7	652.7	1046.1	5332.4	1434.5	308800.9	1.11
BDTG _{semil} > 0.1325	18.7	208.0	2.1	10.1	126.1	125.4	261.2	7.59

Table 4: The number of events passed each cut in the TMVA analysis for the semileptonic channel.

Cut	leptonic	semileptonic	hadronic	tth→other	tīZ	ttbb	tī	$\frac{S}{\sqrt{S+B}}$
Total Events	151.4	628.7	652.7	1046.1	5332.4	1434.5	308800.9	1.11
$BDTG_{had} > -0.5334$	0.3	65.5	365.6	25.0	260.5	222.6	513.6	9.59

Table 5: The number of events passed each cut in the TMVA analysis for the hadronic channel.

	ILC500	ILC500-up	ILC1000	ILC1000-up
$\sqrt{s} \; (\text{GeV})$	500	500	500/1000	500/1000
$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	500	1600^{\ddagger}	500 + 1000	$1600 + 2500^{\ddagger}$
$P(e^-,e^+)$	(-0.8, 0.3)	(-0.8, 0.3)	$\left(-0.8, 0.3/0.2 ight)$	(-0.8, 0.3/0.2)
$\sigma\left(ZHH\right)$	42.7%	?	42.7%	23.7%
$\sigma\left(u \overline{ u} H H ight)$	_	_	26.3%	16.7%
λ	83%	46%	21%	13%
		<u> </u>		P

Higgs coupling determination

[Junping Tian]

~20% precision at 250 GeV

Performance driver:

250 GeV: ZH → ZZZ*

Absolute determination of couplings require knowledge of the total width:

$$Br(H \to XX) = \frac{\Gamma(H \to XX)}{\Gamma_0} \propto \frac{g_{HXX}^2}{\Gamma_0} \longrightarrow \Gamma_0 \propto \frac{g_{HXX}^2}{Br(H \to XX)}$$

An easy example:

$$\Gamma_0 \propto \frac{g_{HZZ}^2}{Br(H \to ZZ^*)} \propto \frac{\sigma(e^+e^- \to ZH)}{Br(H \to ZZ^*)}$$

A more sophisticated example:

$$Y_{1} = \sigma_{ZH} = g_{HZZ}^{2}$$

$$Y_{2} = \sigma_{ZH} \cdot Br(H \to b\bar{b}) = \frac{g_{HZZ}^{2} \cdot g_{Hbb}^{2}}{\Gamma_{0}} \longrightarrow \Gamma_{0} = \frac{Y_{1}^{2} \cdot Y_{3}^{2}}{Y_{2}^{2} \cdot Y_{4}}$$

$$Y_{3} = \sigma_{\nu\bar{\nu}H} \cdot Br(H \to b\bar{b}) = \frac{g_{HWW}^{2} \cdot g_{Hbb}^{2}}{\Gamma_{0}} \longrightarrow \Gamma_{0} = \frac{Y_{1}^{2} \cdot Y_{3}^{2}}{Y_{2}^{2} \cdot Y_{4}}$$

$$-6\% \text{ precision combining}$$

$$250 \text{ GeV} + 500 \text{ GeV}$$

$$500 \text{ GeV: } \nu\nu\text{H} \to \nu\nu\text{WV}$$

2013-07-17, IPMU School "Physics at the ILC" (T. Tanabe)

Total width: $h \rightarrow ZZ^*/WW^*$

H→ZZ* @ 250 GeV	H→WW* @ 500 GeV
BR@125: 2.6% not done yet?	BR@125: 21.5% J. Tian
 various decay modes: 6q 4q2n analysis needs a lot of work 2q2l2n 4l(2q,2n) 	Dre-selection: • MVA to remove the very forward overlaid particles• reject the events with isolated electron or muon• four jets clustering and flavor tagging, No. of PFOs >= 40 (7,6,5,4) final-selection: • Y34 > 0.0026, Y23 > 0.0076 (cut1)• Evis < 230 GeV, Pt > 20 GeV, MissingMass > 200 GeV (cut2)• Isolate lepton rejection: $P(Lmax) < 2^*Econe + 9$. (cut3)• b-jet rejection: (btag1+2btag2<0.7, btag3+2btag4<0.14) (cut4)
separation from ZWW \rightarrow need W/Z separation in jet \rightarrow jet energy resolution	$\frac{\delta(\sigma \cdot Br)}{\sigma \cdot Br} = 2.8\%$ Energy Γ_{H} 250 20%

(just an extrapolation)

6%

500

Taikan Suehara, ILD work

Misc analyses

- Angular property of Higgs in search of BSM
 - $-H\rightarrow WW^*$ anomalous coupling (Takubo et al.)
 - Will improve using c-jet charge
 - $-H \rightarrow \tau \tau$ with Higgs CP-mixing (Yokoyama et al.)
 - Require τ decay measurements

Physics summary

Measure	Detector challenge	Current @CME (nominal lumi)	Improve needs / possibility	Critical other than detector
mass	tracking	37 MeV @ 250	* / **	beam
σ_{ZH}	calo/vertex	3% @ 250	**** / ***	qqh analysis
h->bb	vertex(b-tag)	1% @ 250	** / **	b mass
h->cc/gg	vertex(c-tag)	7-8% @ 250	*** / ***	c-tag algo
h->ττ	$vertex(d_0/z_0)$	4% @ 250	*** / **	
h->WW*	calorimeter	6% @ 250	** / **	
h->ZZ*	calorimeter	(19% @ 250)	*** / ***	analysis
h->γγ	calorimeter	30% @ 250	* / **	
h->μμ	tracking	30% @ 1000	** / *	
tth	vertex/calo	4.3% @ 1000	*** / **	jet clustering
hhh	vertex/calo	21% @ 1000	**** / **	jet clustering
		coupling		

Detector requirements summary

- Vertex finder
 - b-tag (tth, hhh)
 - c-tag (h->cc)
- Tracking
 no critical
- Calorimeter/PFA PFA
 - W/Z separation (qqh, h->ZZ*) esp. ~ 50 GeV

Photon

Neut. H

Frac

~ 10%

~ 30% 15%

σ/√E

60%

30%

- Analysis needed!
- Better energy resolution?

resolution in general (tth, hhh) 100 - 200 GeV

Jet clustering more important

Taikan Suehara, ILD workshop @ Krakow, 25 Sep. 2013 page 17

PFA still have some room?

Identical case (100 GeV)

 $15\% / \sqrt{30} \times 30 = 0.82$

 $60\% / \sqrt{10 \times 10} = 1.90$

0.82 (+) 1.90 = 2.07 GeV

Things to do

- Analysis with benchmark detectors
 - Better performance
 - better vertex resolution
 - better energy resolution
 - Better in cost
 - worse energy resolution (fewer segment / smaller radius)
 - smaller magnetic field
- Software/analysis
 - Systematic errors with control samples
 - Better algorithms
 - flavor tag, jet clustering, MVA analysis etc.

Taikan Suehara, ILD workshop @ Krakow, 25 Sep. 2013 page 18

intensive work by all analysis workers is highly needed!

Total width: $h \rightarrow ZZ^*/WW^*$ $\Gamma_{H} = \Gamma(H \rightarrow XX) / BR(H \rightarrow XX)$ Partial cross section Analysis with the same vertex of production and decay / total cross section 250: $e^+e^- \rightarrow Z^* \rightarrow Zh \rightarrow ZZZ^*$ Use recoil at 250 500: $e^+e^- \rightarrow vvW^*W^* \rightarrow vvh \rightarrow vvWW^*$ performance drivers $h \rightarrow ZZ^*$ analysis: 6q separation from ZWW 4q2n

- 4q21
- 2q2l2n
- 4I(2q,2n)

 \rightarrow need W/Z separation in jet \rightarrow jet energy resolution

not analyzed yet!

пегду	L H
250	20%
	(not confirmed!)
500	6%