Restoring Komag

Yasuhiro Makida

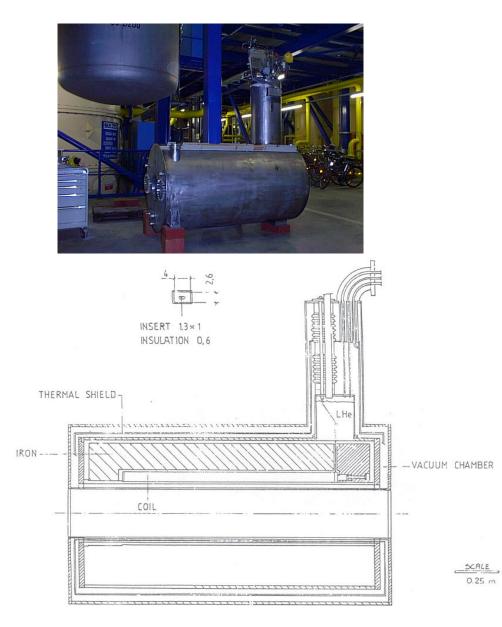
Consideration of restoring and modifying Komag for a stand alone operation without the refrigerator.

Contents

- 1. Magnet parameters
- 2. Stand alone operation

Magnet Parameters (1) Magnet & Coil Parameter

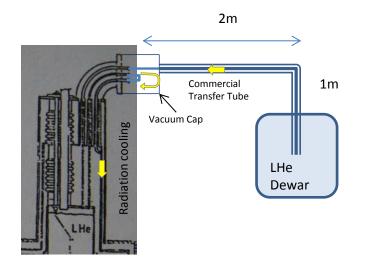
Length	1.2 m		
Internal diameter	0.37 m		
External diameter	0.47 m		
B_{max} (on axis)	5.0 T		
Operating current	1000 A		
Overall current density	4167 A/cm^2		
(NI)max	5.0 10 ⁶ Aturns		
Stored energy (without iron)	1.4 MJ		
Stored energy (with iron)	1.5 MJ		
Self inductance (without iron)	2.9 H		
Self inductance (with iron)	3.2 H		
B_{max} (on conductor)	5.4 T		
Sucking force	50 kN		
Torque (10 mrad misalignement)	2000 Nm		
Coil weight	630 kg		

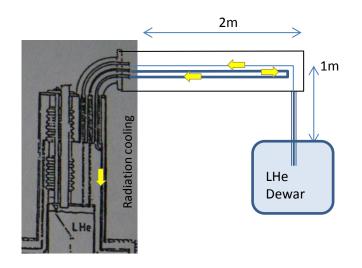

Magnet Parameters (2) Superconductor, Quench Protection

Material	NbTi/Cu	
Dimensions (without insulation)	$4 imes 2.6~\mathrm{mm^2}$	
Dimensions (with Kapton insulation)	$4.3 \times 2.9 \text{ mm}^2$	
Critical current (B=5.4 T at 4.3 K)	1600 A	
Critical current density (conservative)	1300 A/mm^2	
NbTi/Cu	1:7	
Residual resistivity ratio (Cu) RRR	200	
Filament number (diameter)	$600 (50 \mu)$	
Twist pitch	50 mm	
Dump resistor	$0.3-0.4 \Omega$	
Hot spot temperature	120 K	
Discharge time constant	20 – 15 s	
Maximum delay for quench detection	1 s	

Magnet Parameters (3) Cryostat & Cooling Specification

Cryostat overall length	1.84 m	
Internal diameter	0.28 m	
External diameter	1.04 m	
Iron yoke weight	4000 kg	
Helium vessel weight	860 kg	
Vacuum chamber weight	1300 kg	
Thermal loads (T=4.3 K, safety factor 2)	10 W 5	<mark>~ 10 W</mark>
Thermal loads (T=60 K , safety factor 2)	30 W 15	5 ~ 30 W
Current leads (I=1000 A)	0.18 g/s	
Current leads (I=0 A)	2.4 W	
Power supply	25 kW	
Maximum current	1250 A	
Maximum ripple (resistive load)	$\pm 0.05\%$	
Long term stability	$\pm 0.05\%/h$	


Magnet Outlook and Drawing



Coil : 630 kg <= Cu Iron Yoke : 4000 kg <= Fe LHe vessel: 860 kg <= Fe

Modification for Stand Alone Cooling

Stand Alone Case 1

- Effective use of vapor helium gas.
- A vacuum cap is set on the multi-port of the cryostat. And vapor gas from LHe reservoir go to a thermal shield line through the by-pass tube.
- Commercial transfer tube is available.
- LHe consumption is 371 L/day.
- Cryostat modification \500,000 = \$\$,700

Stand Alone Case 2

- Effective use of vapor helium gas.
- Multiple transfer tube with thermal shield is manufactured. Vapor gas flow through the thermal shield cooling line in the TRT and return to the magnet cryostat. It cools the thermal shield in the cryostat.
- LHe consumption is 274 L/day.
- Cryostat modification and new transfer tube need \4,000,000 = \$\$ 30,000

Pre-cooling & Necessary Cryogen

Cold Mass

Coil : 630 kg <= Cu Iron Yoke : 4000 kg <= Fe LHe vessel: 860 kg <= Fe

Cu 630 kg, Fe 4860 kg

Required Cryogen for Precooling

300 K -> 4.2 K Fe : LHe 33.6 L/kg Cu : LHe 31.2 L/kg 300 K -> 80 K -> 4.2 K Fe : LN2 0.53 L/kg, LHe 1.44 L/kg Cu : LN2 0.46 L/kg, LHe 2.16 L/kg

Required Cryogen for Komag Precooling

300 K -> 4.2 K

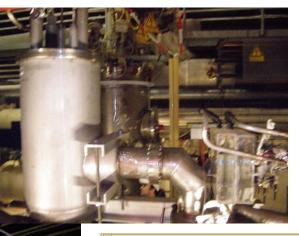
LHe : 183000 L <= Too large quantity

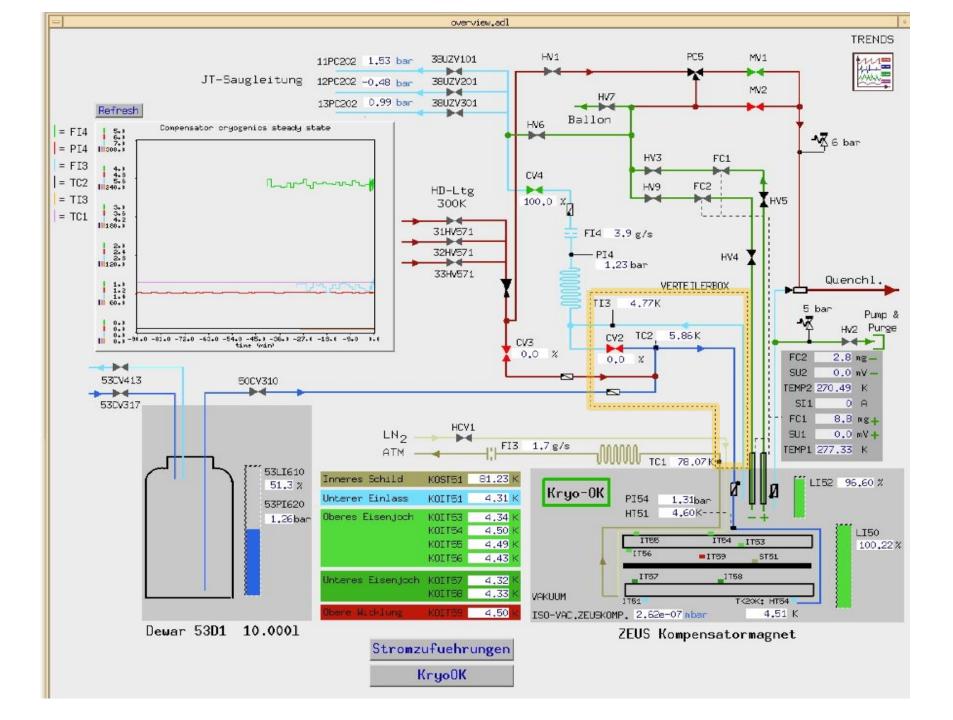
300 K -> 80 K -> 4.2 K

LN2: 3000 L, LHe: 8400 L

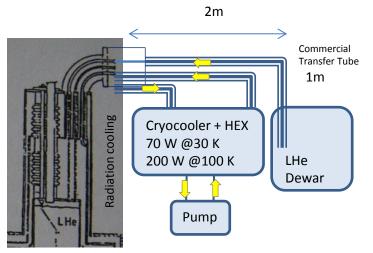
Cryostat Outlook with Service Ports

Drawings of Service Port is required. Joint Type of Pipes should be known.

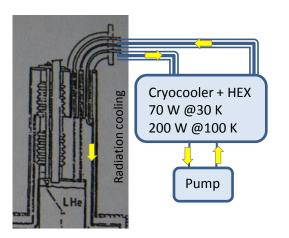

Magnet Outlook at Cryogenic Hall


Magnet was moved to an under ground hall (HELA-B)

Service Ports Outlook


- 1. LHe Supply
- 2. Vapor He Gas Return
- 3. LN2 Supply
- 4. Vapor N2 Gas Return

Stand Alone Cooling with Cryocooler



Steady State

- Radiation shield is kept at lower temperature of 30 K, which result in lower LHe evaporation.
- If heat load reduce at 1 W, LHe consumption is 250 L/day.
- Cryostat modification \2000,000 = \$\$\$ 149,000

Precooling and Keeping at low temperature

- Precooling by using only the cryocooler takes about 1 month.
- But without LN2 handling.
- Keeping magnet at <70 K makes precooling time shorter.

