ILD Vertex Detector: Do we have the right parameters ?

Akiya Miyamoto KEK

ILD Workshop 25 September 2013

Design goal

Performance goal

- $\sigma_{IP} < 5 \oplus 10/p \sin^{\frac{3}{2}}\theta \ (\mu m)$
- Detector specifications
 - Spatial resolution near IP < 3 um
 - Material budget : below 0.15% X0/layer
 - First layer : at a radius of ~ 16 mm
 - Pixel occupancy : not exceeding a few %
 - Power consumption: low enough to minimize the material budget
 - ◆ Radiation hardness : 1kGy and 10¹¹ n_{eq}/cm² per year.

Baseline design

VXD in Mokka ILD_o1_v05 - 3 x double layers(2mm apart)

DBD Table III-2.1. R (mm)|z| (mm) $|\cos \theta|$ Readout time (μ s) σ (μ m) Layer 1 16 62.5 0.97 2.8 50 Layer 2 18 62.5 0.96 6 10 Layer 3 37 125 0.96 4 100 Layer 4 39 125 0.954 100Layer 5 58 100 125 0.914 Layer 6 60 125 0.9 4 100

Alternative geometry

- 5 single-sided layers, R from 15 to 60 mm
- Not included in ILDConfigs

2013/09/25

Coverage and material budget

Impact parameter resolution

- ✓ Resolution of the inner most layer matters.
- ✓ Spatial resolution looks too good
- ✓ Changing FPCCD outer 4 layers 5x5um² → 10x10um² does not affect the impact parameter resolution significantly. Tracking efficiency w. BG would be affected.

Flavour tagging

→ VXD baseline configuration was used for DBD benchmark studies successful.

→ Point resolution and detector materials of baseline design is good

ILD WS @ Cracow

Pair background hits

- Beam pipe and 1st VXD layers are designed to escape a dense region of pairs
 Direct hits and back scatterer from BCAL
- Studied by Mokka simulation.
 - > 30% ambiguities due to Geant4 parameters
 - Need Anti-DID. No 3D map available. Only "analytic map" has been used.

Average pixel hit occupancies

- 1~2% @ 500 GeV, 4~6% @ 1000 GeV conservative 9 pixels/tracker hits assumed.
- need studies with a realistic digitizer and reconstruction codes to see impact on tracking eff. and physics performance

109(0)		
DBD Tabl	e III-5.4. VX	D hits/cm2/BX
Layer	500 GeV	1000 GeV
1	6.320 ± 1.763	11.774 ± 0.992
2	4.009 ± 1.176	7.479 ± 0.747
3	0.250 ± 0.109	0.431 ± 0.128
4	0.212 ± 0.094	0.360 ± 0.108
5	0.048 ± 0.031	0.091 ± 0.044
6	0.041 ± 0.026	0.082 ± 0.042

Issues in Post DBD era

Performance with background hit

- How much tolerance can we tolerate ?
- Need realistic field map, realistic digitizer, track reconstruction with background filtering.
- Inner radius
 - ◆ 1 TeV \rightarrow larger radius for less background with same R.O. time
 - ◆ 250 GeV → smaller radius for better resolution
- Outer layer radius & pixel size
 - Little impact on impact parameter resolution.
 - Affect
 - performance of SiliconTracking & linking of TPC-SiT-VXD
 - larger pixel = lower power consumption
- Alternative geometry : 5 layers
- Vertexing with forward tracking

Performance vs inner radius : RDR

Summary

ILD vertex detector performed well in DBD benchmarking.

- Several issues remain to be studied in DBD
 - Performance with realistic background conditions
 - with a realistic field map with anti-DID and QCs
 - tracking in bkg. environment.
 - Tracking with forward detectors
- Detector options not well studied in DBD
 - ◆ Inner radius : smaller for lower energy run, larger for higher energy
 - ♦ Outer layers : radius, pixel size ...
 - ♦ 5 layers,