AHCAL optimisation challenges towards a TDR

Felix Sefkow

ILD workshop Cracow, 24.-26. September 2013

- Geometry : cost
- Industrialisation : time
- Calibration : precision
- Technology : options

0 Distance between shower axes [mm] Beam Energy [GeV]

Validation of Simulation

AHCAL cost

- DBD costing is far from final, but much better than anything we had before, largely based on 2nd gen. prototyping
- Many lessons to be learnt
- What are the real cost drivers at present?
- What are the scaling laws?

AHCAL cost drivers and scaling

- Absorber $10M \sim volume$
- ~ channel • SiPM 8M

50M

- 22M ~ area • PCBs
- and not
- Scintillator 1.5M
- ASICs 1.8M
- Interfaces 1.4M
- total

- Parameterize as function of
 - inner radius Ri
 - thickness $T = R_0 R_i$
 - absorber layer thickness d
 - tile size g
- and study performance as a function of cost

Parameter optimisation

Distance between showers [cm]

- Was done for the LOI
 - see Angela Lucaci's talk at ILD meeting in Cambridge, 2008
 - tile size
 - tile thickness
 - absorber material
 - absorber plate thickness
 - total thickness
 - dead zones
- Revise main cost drivers with new Pandora
 - absorber plate thickness d

%

Quality,

- tile size g; varying?
- total thickness T

Calorimeter for II

Strip option: need SSA

0.055 0.58 Absorber thickness Absorber thickness 45 GeV iets **> 0.56** 9 9 9 9 0.54 ∎ 10 GeV K⁰₁'s GeV 0.050 100 GeV jets 0.56 _ั∌ 0.045 ш 250 GeV iets 0.040 SWU 0.035 N₀e2MR 0.52 0.50 0.48 0.030 10 Absorber/scintillator ratio Absorber/scintillator ratio note zero suppression ECAL+HCAL 100 90 80 70 60 Raspereza 2004: 50 transverse 40 and longitudinal $1x1cm^{2}x1$ 30 3x3cm²x1 sampling important 5x5cm²x1 20 3x3cm²x2 for shower separation 10 0 5 10 15 20 25 30

single hadrons and jets:

Calorimeter for

Physics optimisation

- Impact of detector design on particle flow performance
- and impact of PFlow performance on physics output
- factorize quite well
- Separate discussions
 - avoid moving target
- However: staging might be an interesting topic
 - physics targets move with energy and thus time
 - performance drivers change with energy

needs sensitive benchmark

Industrialisation: Numbers!

ITEP

Felix Sefkow

- The AHCAL
- 60 sub-modules
- 3000 layers
- 10,000 slabs
- 60,000 HBUs
- 200'000 ASICs
- 8,000,000 tiles and SiPMs

AHCAL optimisation

- One year
- 46 weeks
- 230 days

• 2000 hours

• 100,000 minutes

• 7,000,000 seconds

Quality control and production Tile Quality Assurance

- Can be done: our engineers are looking forward to it
- There are interesting problems to solve
- Some efforts started:
- SiPM and tile QC and characterisation
 - with UV light and beta source
 - fully automatised, fast parallel readout
- LED ad ASIC tests
- HBU assembly
 - place tiles, solder SiPMs
 - close relation to tile design and SiPM coupling
 - impact on QC chain

AH

Automatic assembly

• pick and place machine

Phi Chau, Mainz

Automatic assembly

• pick and place machine

Phi Chau, Mainz

Scintillator tile options

CPTA, KETEK or Hamamatsu sensors

no WLS fibre

individually wrapped; KETEK sensors

Hamamatsu sensors, on PCB surface

- Megatiles interesting alternative
 - need to understnd limitations and impact of optical cross talk
- need to optimise design and production together
- implication for QC chain: scintillator SiPM system independent of final electronics - or not

Calibration: look at full chain

- LOI validation: IDAG triggered study of required precision and luminosity for calibration
- MIP (= cell energy) scale well understood
- LEDs for gain monitoring: issue is not cost, but time, and bandwidth
- need to optimize strategy, possible feedback on design and specs
- Test bench is part of calibration study required precisions vs. time needed for procedures
- "Precision" = measurement accuracy or device-to-device non-uniformity

Track segments in $Z^0 \rightarrow$ uds at 91.2 GeV

Calice Analysis note 18 and ILD noteFelix SefkowCracow, 25. September 201312

Front end band width

- Bottle neck for ILC calorimeter DAQ is the in the front end
- Auto-trigger, read-out after bunch train
- None of the 8,000,000 buffers must ever over-flow
- Studies for test-beam prototype
- For ILD, need occupancy including gamma gamma background
 - polar angle dependent, including safety margin from machine side
 - by all means exclude back-ground dependent inefficiencies
 - possible impact on electronics design and cost

Technologies

- Some more advanced technical ideas:
- On-detector gain calibration:
 - analyse SiPM spectra and extract gain
 - no raw data read-out for LED events
- Digital SiPMs
 - no temp dependence, no analogue electronics
 - digital network much more complex
- should do some conceptual studies
- rather topics for an upgrade

Conclusions

- Cost performance optimisation: can now be done, should now be done
 - instrumented area is the main driver
- Industrialisation: need to make the next step and face the big numbers - the real challenge
 - look at design details and production sequence together
- No real progress without serious prototyping
- Options for technology leaps
- Optimisation does not interfere with R&D plan and prototyping
 coarser is cheaper and easier, finer is demonstarted by ScECAL

Back-up

W Z separation

W Z separation

tth-6q-hbb

Calorimeter for IL

Better choice

- Chargino and neutarlino production
- Decays in WW, ZZ and missing energy
- studied for LOI

