

Status of ILC Project

Nick Walker – DESY ILD Meeting – Cracow – 24.09.2013

Overview

The GDE is over!

Technical news: XFEL (ILC prototype) construction

Beyond TDR:

Under new management: LCC

Beginnings of a 3-year technical programme

Light Higgs Factory & 10-Hz running

Where do we go from here?

• LINEAR COLLIDER COLLABORATION Worldwide Cryomodule Development

CM1 at FNAL NML module test facility

S1 Global at KEK SRF Test Facility (STF)

PXFEL 1 installed at FLASH, DESY, Hamburg
 → now commencing XFEL production

LINEAR COLLIDER COLLABORATION European XFEL @ DESY

Institute	Component Task
CEA Saclay / IRFU, France	Cavity string and module assembly; cold beam position monitors
CNRS / LAL Orsay, France	RF main input coupler incl. RF conditioning
DESY, Germany	Cavities & cryostats; contributions to string & module assembly; coupler interlock; frequency tuner; cold- vacuum system; integration of superconducting magnets; cold beam-position monitors
INFN Milano, Italy	Cavities & cryostats
Soltan Inst., Poland	Higher-order-mode coupler & absorber
CIEMAT, Spain	Superconducting magnets
IFJ PAN Cracow, Poland	RF cavity and cryomodule testing
BINP Russia	Cold vacuum components

The ultimate 'integrated systems test' for ILC.

LINEAR COLLIDER COLLABORATION

Quest for high gradients

GDE worldwide R&D effort to establish high-gradient cavity production

6 Now qualified cavity vendors

XFEL (mass) production

- large (~800) unbiased statistical sample
- 2 vendors
- Currently ~10% tested
- critical for ILC

Test Date (number of cavities)

TDR published result

23

56

As of 11.09.2013

Num. of cavities:

vendor 1

vendor 2

		Vendor 1	Vendor 2	Total stats
max. gradient	1st pass	30.5 ±7.5	28.8 ±6.9	29.3 ±7.1
	1st+2nd pass	33.4 ±3.8	31.4 ±4.5	32.0 ±4.4
usable gradient	1st pass	27.6 ±6.8	26.0 ±6.5	26.5 ±6.6
	1st+2nd pass	31.8 ±2.9	29.5 ±4.1	30.1 ±3.9

2nd pass: additional high-pressure rinse

usable gradient: X-ray limited (dark current)

XFEL Cryomodule Assembly

Module assembly at CEA Saclay

Just starting Peak rate: (possibly

1 CM / 2 weeks 1 CM / 1 week 1.5 CM / 1 week) XM-3 tested @ DESY XM-2 cool down @ DESY XM-1 assembly @ Saclay XM+1 prep @ Saclay XM+.. XM+101

Linear Collider Collaboration

Akira Yamamoto – KEK LC Office

Work for TB at LCWS - Tokyo

LCWS Working Groups

ILC' 'Mike'Harrison CLIC' Steinar'Stapnes

ILC-specific

AWG7: Conventional Facilities

Vic Kuchler (FNAL) John Osborne (CERN) Atsushi Enomoto (KEK)

AWG9: SCRF Technologies

Akira Yamamoto (KEK) Hitoshi Hayano (KEK) Wolf-Dietrich Moeller (DESY)

Linear Collider Groups

AWG1: Sources

Wei Gai (ANL) Steffen Doebert (CERN) Masao Kuriki (KEK)

AWG2: Damping Rings

Ioannis Papaphilippou (CERN) David Ruben (Cornell)

AWG3: Beam Delivery & MDI

Rogelio Tomas (CERN) Tom Markiewicz (SLAC) Gao Jie (IHEP) Lau Gatignon (CERN)

Joint ILC-CLIC groups

AWG4: Beam Dynamics

Nikolay Solyak (FNAL) Andrea Latina (CERN) Kiyoshi Kubo (KEK)

AWG8: System tests and

performance studies

Daniel Schulte (CERN) Marc Ross (SLAC) Roberto Corsini (CERN) Nobuhiro Terunuma (KEK)

Technical focus will be:

- Site-dependent design (Kitakami)
- Further R&D
 - SRF infrastructure, mass production, coupler design
 - Positron source
 - BDS (ATF2)
 - ...
- Pre-implementation project studies
 - ILC cryomodule production in all three regions
 - International project structure and project tools development

Site dependent design

- Understanding constraints from the Kitakami site ۲
 - Specific geological and topographical issues
 - Infrastructure and support planning
- Modifying the TDR design as necessary ۲
 - Expect to be driven by Conventional Facilities and Siting
 - Example: shifting main linac access ways
 - Detector hall and "central region" will likely be a focus Not discussing change of scope!
- Considerations of a staged approach
 - starting at 250 GeV centre of mass

INEAR COLLIDER COLLABORATION TDR: Japanese site-dependent design

Challenges of a mountainous terrain

Long horizontal access tunnels (≤ 1 km)

Almost entirely under ground installation

LCC forming plans for site-dependent study

LCWS will be an important meeting in this regard

Beam Test Facilities

SRF

- FLASH
- NML
- STF
- XFEL (>2016)

Damping Rings

- CesrTA
- ATF
- 3rd gen Light sources
- B-Factory

Final Focus

• ATF2

Formal international collaboration

Test bed for ILC final focus optics

- strong focusing and tuning (37 nm)
- beam-based alignment
- stabilisation and vibration (fast feedback)
- instrumentation

Staged construction: 250 GeV

Favoured

- Complete civil construction for 500 GeV machine
- Install ~1/2 linacs for fist stage operation (and long transport line)
- Capital savings ~25%
- Adiabatic energy upgrade (lower rate cryomodule production)

Centre-of-mass independent:

ic

f-mass independent:			Luminosity Upgrade
Collision rate	Hz	5	5
Number of bunches		1312	2625
Bunch population	×10 ¹⁰	2	
Bunch separation	ns	554	366
Pulse current	mA	5.8	8.8
Beam pulse length	μs	730	960
RMS bunch length	mm	0.3	
Horizontal emittance	μm	10	
Vertical emittance	nm	35	
Electron polarisation	%	80	
Positron polarisation	%	30	

Centre-of-mass dependent:

ilr

ΪĹ

Centre-of-mass energy	GeV	200	230	250	350	500
Electron RMS energy spread	%	0.21	0.19	0.19	0.16	0.12
Positron RMS energy spread	%	0.19	0.16	0.15	0.10	0.07
IP horizontal beta function	mm	16	16	12	15	11
IP vertical beta function	mm	0.48	0.48	0.48	0.48	0.48
IP RMS horizontal beam size	nm	904	843	700	662	474
IP RMS veritcal beam size	nm	9.3	8.6	8.3	7.0	5.9
Vertical disruption parameter		20.4	20.4	23.5	21.1	24.6
Enhancement factor		1.83	1.83	1.91	1.84	1.95
Geometric luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.25	0.29	0.36	0.45	0.75
Luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.50	0.59	0.75	0.93	1.8
% luminosity in top 1% $\Delta E/E$		92%	90%	84%	79%	63%
Average energy loss		1%	1%	1%	2%	4%
Pairs / BX	×10 ³	41	50	70	89	139
Total pair energy / BX	TeV	24	34	51	108	344

Centre-of-mass dependent:

ilr

ΪĹ

Centre-of-mass energy	GeV	200	230	250	350	500
Electron RMS energy spread	%	0.21	0.19	0.19	0.16	0.12
Positron RMS energy spread	%	0.19	0.16	0.15	0.10	0.07
IP horizontal beta function	mm	16	16	12	15	11
IP vertical beta function	mm	0.48	0.48	0.48	0.48	0.48
IP RMS horizontal beam size	nm	904	843	700	662	474
IP RMS veritcal beam size	nm	9.3	8.6	8.3	7.0	5.9
Vertical disruption parameter		20.4	20.4	23.5	21.1	24.6
Enhancement factor		1.83	1.83	1.91	1.84	1.95
Geometric luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.25	0.29	0.36	0.45	0.75
Luminosity Upgrade	×10 ³⁴ cm ⁻² s ⁻¹	1.00	1.18	1.50	1.86	3.6
% luminosity in top 1% $\Delta E/E$		92%	90%	84%	79%	63%
Average energy loss		1%	1%	1%	2%	4%
Pairs / BX	×10 ³	41	50	70	89	139
Total pair energy / BX	TeV	24	34	51	108	344

Luminosity Upgrade

Adding klystrons (and modulators)

ir

Damping Ring:

Centre-of-mass dependent:

ilr

ΪĹ

Centre-of-mass energy	GeV	200	230	250	350	500
Electron RMS energy spread	%	0.21	0.19	0.19	0.16	0.12
Positron RMS energy spread	%	0.19	0.16	0.15	0.10	0.07
IP horizontal beta function	mm	16	16	12	15	11
IP vertical beta function	mm	0.48	0.48	0.48	0.48	0.48
IP RMS horizontal beam size	nm	904	843	700	662	474
IP RMS veritcal beam size	nm	9.3	8.6	8.3	7.0	5.9
Vertical disruption parameter		20.4	20.4	23.5	21.1	24.6
Enhancement factor		1.83	1.83	1.91	1.84	1.95
Geometric luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.25	0.29	0.36	0.45	0.75
Luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.50	0.59	0.75	0.93	1.8
% luminosity in top 1% $\Delta E/E$		92%	90%	84%	79%	63%
Average energy loss		1%	1%	1%	2%	4%
Pairs / BX	×10 ³	41	50	70	89	139
Total pair energy / BX	TeV	24	34	51	108	344

ilc

Higgs Factory

Centre-of-mass dependent:

•						
Centre-of-mass energy	GeV	200	230	250	350	500
Electron RMS energy spread	%	0.21	0.19	0.19	0.16	0.12
Positron RMS energy spread	%	0.19	0.16	0.15	0.10	0.07
IP horizontal beta function	mm	16	16	12	15	11
IP vertical beta function	mm	0.48	0.48	0.48	0.48	0.48
IP RMS horizontal beam size	nm	904	843	700	662	474
IP RMS veritcal beam size	nm	9.3	8.6	8.3	7.0	5.9
Vertical disruption parameter		20.4	20.4	23.5	21.1	24.6
Enhancement factor		1.83	1.83	1.91	1.84	1.95
Geometric luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.25	0.29	0.36	0.45	0.75
Luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.50	0.59	0.75	0.93	1.8
% luminosity in top 1% ∆E/E		92%	90%	84%	79%	63%
Average energy loss		1%	1%	1%	2%	4%
Pairs / BX	×10 ³	41	50	70	89	139
Total pair energy / BX	TeV	24	34	51	108	344

ILC Polarised-Positron Production

Positron production yield dependent on e- beam energy (and therefore $\mathsf{E}_{\rm cm}$)

Positron Yield

TDR: 10-Hz Mode (e+ production)

- For TDR, we are required to have solutions down to Z-pole (~45 GeV beam)
- ILC TDR assumes 10-Hz mode where
 - e- linac is pulsed at 10 Hz
 - first pulse @ 150 GeV to make positrons
 - second pulse @ E_{cm}/2 to make luminosity

collision rate still 5Hz

Issues

- DR damping time halved (extra cost and MW)
- Beam dynamics in Main Linac (looks OK)
- Additional beam lines and pulsed magnet systems
- Additional AC power for elec linac 10-Hz mode
 - But for 500 GeV design, additional power already available
 - Not insignificant cost increase for a dedicated LHF

Positron Yield

Positron Yield for a LHF

Alternative Electron-Driven Source

T. Omori et al, Nucl. Instrum. Meth. A 672 (2012) 52-56

Light Higgs Factory

Assume we do not need 10-Hz e+
production mode

− P_{AC} ~ 120 MW → ~100 MW (at least for undulator)

TDR still contains

:lr

- 10 Hz damping ring (100 ms store time)
- 10 Hz e+e- source and injectors

Could we run 10 Hz collisions?

- Shorter linacs run at full gradient (31.5 MV/m)
- 10Hz operation would require additional AC power
 - x2 RF AC power
 - x1.5 Cryo power
- Requires feasibility study
 - e.g. cryoplant capacity
 - cost!

• http://arxiv.org/abs/1308.3726

Next Steps

- (Wait for Japan!)
- Develop a technical plan for the next three years
 - Site-dependent design study
 - Specific Industrialisation and cost-reduction R&D
- Work closely with XFEL and monitor progress
- Begin to discuss possible contributions to a Japanese hosted projected
 - Scope of in-kind contributions
 - Project structure

Funding! **Establish European, American and Asian Regional Teams in the post-GDE era**

See you in Japan 😳