INSTITUTO TECNOLÓGICO DE ARAGÓN

Powering a low mass detector (FTD- ILD power system)

Dr. Fernando Arteche

ILD meeting, Institute of Nuclear Physics PAN, Cracow September 2013

OUTLINE

- 1. Introduction
- 2. Power requirements
- 3. Powering schemes
 - DC-DC converters based power distribution
 - Super-capacitors based power distribution.
- 4.Supercapacitors
 - Radiation test for Super-capacitors
- 5.Conclusions

1. Introduction

- Future ILC experiments need low mass detectors in order to increase the accuracy of the physics measurements.
 - Minimize or No cooling pipes
 - Low copper/aluminum components
- The powering of low mass detector is a challenging project because it requires:
 - High efficiency system.
 - Cables with small cooper section / Minimum shielding
 - Sensitive electronics
- The synchronization of the FEE power consumption with the accelerator beam duty cycle increase the detector efficiency
 A big effort is under development from electronics designers
- Special attention should be paid in the design of the power systems.
 - It should be specially designed to be compatible with electronics operation mode.

2. Power requirements

- During the last years several R&D activities focused on the design of the power supply system have been carried out for FTD-ILD.
 - 10 disks 16 petals

- The FTD electronics will operate synchronously (or coordinated) with ILC accelerator....
 - 1 ms bunch train every 200ms (Duty cycle of 0.5%)

2. Power requirements

- Several conservative considerations have been assumed in the electronics operation:
 - Electronics duty cycle operation (2.5% 5ms / 200ms).
 - 1 ms power up / down
 - 3 ms operation state to stabilize power and operate.
 - It minimizes transients

– Power consumption during the standby (20% Pmax).

- It is a critical parameter (100W / 20W): 22 W/cycle
 - 2.5W/cycle FEE ON (11%)
 - 19.5W/cycle STAND BY (89 %)
- If standby power 10W : Ptotal = 12.25 W/cycle
- If FEE operation time 2.5ms: : Ptotal=21W/cycle

4 de 21

2. Power requirements

- The total Strip-FTD current / power demanded is:
 - Bunch crossing state 458 A (≈ 860 W)
 - Stand-by state 91.6A (≈ 171W)

	MIDDLE PITCH									
<u>FTD</u>	FTD3		FTD4		FTD5		FTD6		FTD7	
	INN	OUT	INN	OUT	INN	Ουτ	INN	OUT	INN	Ουτ
Nº Readout	33920	61504	41600	64224	45472	65504	51232	67424	634	424
Chips per petal (256 ch)	24		20	6	28		29		16	
Optical links per petal	1/2		1/	2	1/2		1/2		1/2	
l1.5 (A) per Petal	1.75 / 0.35		1.9/	0.38	2.05 / 0.41		2.12 / 0.42		1.16/0.23	
I2.5 (A) per Petal	1.05 / 0.21		1.13/0.23		1.22 / 0.24		1.27/0.25		0.7/0.14	
l per petal	2.79/0.56		3.03/0.61		3.26 / 0.65		3.39 / 0.68		1.86 / 0.37	
I per disk	44.6 / 8.9		48.5 / 9.71		52.08 / 10.42		54.19/10.84		29.76 /5.95	
TOTAL Mstrip- FTD Current		458 A /	91.6 A	(CMS upgrade TK elec.)						

3. Powering schemes

- Several important issues have to be considered during the design of the power system:
 - Transient phenomena
 - EMI phenomena
 - Power dissipation effects
- All these phenomena have an impact on the design of the power supply distribution system
 - Topology / Granularity (1/4 petal)
 - Cooling
 - Material budget
- There are several topologies that may be used for FTD.
 - DC-DC-based power distribution
 - Super-capacitor based power distribution
- Power system evaluation based on:
- 6 de 21 Sim. / Measu.

ILD meeting Cracow, September 2013

- It is based on the installation of DC-DC converter at FTD level.
 - It absorb transients related to power pulsing system.
 - Low currents before DC-DC due to converter ratio.

- Example (1/4 disk) : Power values per group FTD 6+:
 - FTD level 4 petals:
 - <u>6 DC-DC converters</u>
 - 4 DC-DC (10V 1.5V) 2.1A / 0.4A
 - 2 DC- DC (10V 2.5V) -2.5A / 0.5A
 - Short cabling Low current (low transients) AWG18
 - Outside FTD (1cable per 1/4 disk)
 - Max out current per DC-DC less than 3 A (2.5A /0.5A)
 - Transients attenuated by the DC-DC
 - Primary power unit
 - Imax=3 A / V= 12V Power required > 36 W

- TOTAL INSTALED POWER REQUIRED FOR FTD

- <u>1.4kW</u>
- A similar number of HV cable will be considered to keep the same granularity

Power dissipation per <u>ILC cycle</u> (W/c): *DC-DC converter efficiency : 80%

<u>Group</u>	<u>FTD 3+</u>	<u>FTD4+</u>	<u>FTD5+</u>	<u>FTD6+</u>	<u>FTD7+</u>
FEE	4.6	5	5.4	5.6	3
CABLE	0.02	0.033	0.039	0.041	0.012
DCDC*	0.92	1	1.07	1.11	0.61
TOTAL (1/4)	5.55	6.04	6.48	6.74	3.69
TOTAL DISK	22	24.1	26	27	14.7
External cable (20m)	0.23	0.27	0.31	0.34	0.1

- Important topics associated with DC-DC converters
 - <u>Material</u>
 - Shielding Main inductor.
 - Dynamic
 - Dynamic behavior: Negative impedance & Transients
 - EMI phenomena (Noise)
 - Conducted & Radiated

3.2 Powering schemes: Super-capacitor based PS

3.2 Powering schemes: Supercapacitor based PS

- The high capacitance has two advantages:
 - It will protects the system in case mains failure Similar to UPS
 - It helps shutdown the system in a controlled way.
 - The dynamic response of primary power unit may be very slow
 - · Remote regulation of the supercap voltage will be easy

- The duration of the shut-down capability will depend on :
 - Capacitance
 - Voltage

3.2 Powering schemes: Supercapacitor based PS

- Example (1/4 disk) : Power values per group FTD 6+:
 - Routing Inside each petal
 - 3 Regulators
 - 2 REG (4V -1.5V) / 1. A Pk 0.21A
 - 1 REG (4V- 2.5V) / 1.2 A Pk 0.25A
 - Short cabling Less than 0.2 meter (low voltage drop)
 - Per Group- ¼ disk (12 LV regulators)
 - <u>2 Super-capacitors</u> per (1/4 disk) C=25 F / V=4 V / Imax=11 A /Imin≈0
 - <u>1 Cable per disk</u>
 - Max out current per cable around 2/3 A (defined by FEE stand-by)
 - Primary power unit
 - I max = 3 A / V ≈ 4V **Power = 12W**
 - TOTAL INSTALED POWER REQUIRED FOR FTD
 - Power 480 W
- A similar number of HV cable will be considered to keep the same granularity

3.2 Powering schemes: Super-capacitor based PS

Power dissipated per ILC cycle (W/cycle):

Group	FTD 3+	FTD4+	FTD5+	FTD6+	FTD7+
FEE	4.6	5	5.4	5.6	3
CABLE AWG 27	0.04	0.04	0.05	0.06	0.02
LV REG	4.9	5.41	5.74	5.96	3.24
SUPERCAPS	0.06	0.072	0.083	0.089	0.027
TOTAL (1/4)	9.63	10.6	11.3	11.7	6.4
TOTAL DISK	38.5	42.1	45	46.5	25.5
External cable (20m) – AWG 16	2.92	3.515	4	4.4	1.26

0%

ILD meeting Cracow, September 2013

4 Super-capacitors

- The most important element in SC-LV regulation option is the super-capacitor.
 - It is new for HEP but not for industrial applications
- Super-capacitors are electrochemical capacitors with very high capacitance (x1000) – Most common EDL
- Most of the material of the capacitor is carbon
- Main characteristics
 - It operates at low voltage Vmax = 2.7 V
 - Large number of cycles & High efficiency (Low ESR))
 - Temperature range 35°C up to 65 °C

4 Super-capacitors

- There are two elements that have to be analyzed in detail for HEP applications
 - Cycling issues
 - Radiation issues
- Cycling issues (Reliability).
 - Super-capacitor should be able to operate more that 10 million of cycles per year (DC-DC too)
- Radiation issues
 - Type of radiation:
 - Gammas & electrons
 - Total dose:
 - 1 or 2 Mrad.

- A radiation test has been carried out in order to start the super-capacitor validation for FTD-ILD
- 5 super-capacitors have been tested ESR(T) & C(T)
 - Different rates
 - 3 x 10 F & 2 x 25 F
 - Different companies
- They have been tested before and after radiation at 4
 different current rates
- Radiation parameters:
 - Electrons at 20 MEV
 - Beam spot 3x3 cm2
 - 4 hours of irradiation.
 - Total dose :
 - 0.6 Mrad -2.3 Mrad (3%)

ILD meeting Cracow, September 2013

Radiation test has been performed at Electron Stretcher Accelerator (ELSA, Bonn)

ILD meeting Cracow, September 2013

ILD meeting Cracow, September 2013

Cracow, September 2013

5. Conclusions

- A general overview of the two power supply distribution system for FTD has been presented
 - Each of them has some advantages and disadvantages

	DC-DC	Super-caps
Power dissipation	228 W	395 W
EMI phenomena	Yes	No*
RAD tolerant	Yes	? (First test OK)
Material budget	(240 DC-DC) ?	(80 SC) ?
Reliability	?	?
Power pulse applications	Not frequent	Yes
Installed power	1.4 kW	0.48 kW
Primary PS	≈ 36 W	≈ 15 W
Mains protection (UPS effect)	No	Yes