Detector Requirements: The BSM Perspective

ILD Workshop, Krakow September 25, 2013 J.List, DESY

ILC New Physics Goals

- 1. find things missed by LHC
 - A) if LHC finds nothing
 - B) if LHC finds some, but not ALL new states

In case you missed it

- 2. do precision measurements of stuff found
 - A) by LHCB) at the ILC
- 3. figure out underlying theory, determine its parameters, show consistency with cosmology, flavour, neutrino

What could escape the LHC?

 not the famous plain-vanilla SUSY: strong production, large MET, high ET jets / leptons,...

J.List

- but these might be hiding:
 - small mass differences
 (co-annihilation, higgsinos,...)
 - fully hadronic final states
 with low MET (RPV!)
 - low cross-sections and diverse decay modes
 - signatures with large irreducible backgrounds
 - -> systematic uncertainties!

In case you

missed it

Low energy particles

 States with small mass differences impossible to resolve at LHC (even if *some* deviation from SM can be discovered!)

=> unique ILC opportunity!

• Requires:

- ability to reconstruct low momentum particles
 → sub-GeV tracks, photons
- particle ID: identify exclusive decay modes of (near-)degenerate states
- non-pointing signatures: photons, kinks, ...
- modelling of pair and yy backgrounds incl. overlay

Tracking efficiency in DBD:

ttbar + pair background

Tracking for sub-GeV particles

- P_T spectrum of Higgsino
 decays ΔM = 770 MeV (!)
- Ť Events/0.1 GeV 10⁴ dM770 $\widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-} \gamma$ 0.8 10³ $\widetilde{\chi}_{1}^{0} \widetilde{\chi}_{2}^{0} \gamma$ 0.6 all cos(θ) 📥 500 GeV 10² 0.4 Charged particles - 1 TeV 0.2 photons 10 0.5 1.5 0 P_T/GeV P_T/GeV arXiv:1307.3566
 - Not yet studied: corresponding fake rate!
 - Can efficiency be improved for < 0.5 GeV?
 - Stand-alone Si tracking?

P_T spectrum of Higgsino
 decays - ΔM = 770 MeV (!)

 Reconstruction efficiency, fake rate, resolution, ...

SLOW

Once there is a new particle..

- ... precision measurements!
- Statistical precisions can reach:
 - O(10 MeV) for masses
 - O(1%) for cross-section x BR

... or better

=> better seriously study also potential systematics -

Or: precision vs accuracy

Precision Measurements

- **Precision** (detector resolution):
 - separate close-by states
 - separate decay modes
- Accuracy (detector calibration):
 - momentum / energy scale
 - beam energy spectrum etc
- **Modelling** ("Standard model" calibration):
 - fragmentation / hadronisation corrections
 - γγ background: photon structure functions, modelling of γ-hadron interactions

J.List

=> needs SM precision measurements!

Non-pointing Photons

- Generic BSM signature: invisible \rightarrow photon + invisible
- Often in connection with lifetime => non-pointing photons!
- Measure photon angle from cluster main axis in Ecal
- Reconstruct lifetime and masses of "invisible" particle
- Last studied with LoI detector
- Benchmark Si vs Scintillator vs mixed ECal in terms of photon φ and θ reconstruction: resolution & bias

Model-independent WIMPs

• In "invisible + ISR" mode

- Sensitivity limited by systematics
- Currently: assume 3%
 on background prediction
- 1% would give factor ~2 gain in suppression scale Λ

 Huge irreducible background due to

Physics Benchmarks

- Light Higgsinos/Winos:
 - very small mass differences
 - Exclusive decay modes: displaced vertices, particle ID
- WIMPs:
 - Invisible + ISR
 - High irreducible background from SM vvγ: control of systematics

- Light Gravitinos:
 - non-pointing photons
 - Ecal performance in cluster angle reconstruction
- Light staus:
 - small mass differences
 - үү background suppression
 - tau reconstruction

What does this mean for ILD?

- Go through aspects unique to BSM
- Aspects for SM / Higgs also good for BSM ;-)
- Will comment on
 - Vertex / inner Si
 - TPC
 - Ecal
 - Fcal

Vertex / SIT / FTD

- Unique ILC BSM opportunity: small mass differences
 => sub-GeV particles => don't reach TPC!
- Stand-alone pattern recognition & track fit in Si detectors!
- Currently: seems challengingif integrating 80...100 BX worth of pair background! → Where's the limit?
- => Optimise point resolution vs read out speed (cf talk by Marc Winter yesterday!)
- Geometric combinations: alternating layers for time / point res.?
- At which point resolution does flavour tag start to suffer?
- Dependence on ECM:
 - 250 GeV: less pairs \rightarrow focus on point resolution (Higgs!)
 - 500 GeV/1TeV: timing more important?

TPC: dE/dx

- One of the selling points of a TPC!
- Easy: anomalous dE/dx from exotic particles

 → basically ruled out by LHC (even visible with Si)
- Interesting: pi vs p vs K separation
 - Improve jet energy resolution (and scale?) by taking correct masses – for a 45 GeV jet, m_p = 1 GeV is 2%
 - Reduce uncertainties due to fragmentation
 - Identify exclusive decay modes of new particles
 → some completely background free
 – discovery with very few events!

Ecal: Photons

- Major cost driver will have to justify the costs!
- SiW factor 2 more expensive than scintillator strips
- Jet energy resolution looks comparable (?)
- Interesting for New Physics:
 - Photon energy resolution
 - high energy up to ECM/2: WIMPs!
 - low energy: eg Higgsinos
 - Photon angle reconstruction (cluster shape)
 - Pi0 reconstruction (eg Higgsinos, WInos)

=> any of these better or worse for one of the options?

FCal: Hermeticity

High energy electrons / photons (

BeamCal acceptance: limited by beam background rather than intrinsic detector properties !?

Low angle muons & hadrons

- Sensitivity of BeamCal, LumiCal to MIPs, hadrons?
 → important to suppress certain γγ backgrounds
- LHCal design?
 - Performance?
 - LHCal is essential for hermeticity
 → NP with small mass differences !

Conclusions

- We have to continue to make the physics case
- In particular for BSM: have to ensure ILD's sensitivity to LHC "loop-holes"
- Once something is found: the full precision program – control of systematics
- Wish-list for ILD:
 - SiTracking: Sub-GeV particles → stand-alone Si tracking in presence of beam background ?!
 - Ecal options: benchmark photon angle reconstruction
 - **TPC**: investigate benefit of dE/dx particle ID
 - Fcal: design for LHCal, MIP/hadron hermeticity