

SiW ECAL optimisation in simulation

Trong Hieu TRAN

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3

Outline:

- Introduction
- PCB thickness
- Guarding size of the sensors
- Effect of dead pixels
- Number of layers

Summary of works done by: Shion Chen, Daniel Jeans, Sachio Komamiya, Chihiro Kozakai University of Tokyo Trong Hieu Tran LLR, Ecole polytechnique

ILD meeting Cracow, September 2013

Introduction

Motivation

- ◆ ILD is costly, especially SiW ECAL (~30% ILD's price)
- SiW ECAL cost mainly due to: large sensitive area, large number of channels
- Many studies of cost-effectiveness were/being realised
- Options:
 - Reduce ECAL number of layers
 - PCB thickness
 - Guard ring size
 - Effect of Si sensor dead area.
 - **♦** ...
- All studies are done with Mokka & Marlin framework.
- Detector performance estimated via jet energy resolution (JER) with jets recontructed by PandoraPFANew.
- ILD model: ILD_01_v05 (DBD)

Guard ring in SiW Ecal

- Sensor is matrix of PIN diodes
- Guard ring prevents surface leakage current → decreases dark current and improves high voltage stability
- Study how geometrical inefficiency affects JER resolution

Guard ring in SiW Ecal: energy correction

- Energy decreases in gaps between slab sensors, alveolars, at module ends and barrel/endcap gap.
- Direction resolution for θ of 3.3 \times 10-4 rad. Sufficient to give a correction by $\theta.$
- Correction is determined by gaussian+linear fit of simulated response to 10 GeV photon
- Energy drop ~10% @ 1.0mm, ~20% @ 2.0mm

JER with different guard ring widths

- $Z \rightarrow$ uds events (Z decaying at rest). JER estimated by RMS90 method.
- Linear dependence of JER with 6% difference between 0 mm and 2mm widths
- Angular correction also helps resolution

PCB thickness

PCB thickness

- Increases lateral shower size
- More overlap of particle showers
- Confusion increases \rightarrow JER is expected to be worse at high E
- Thin PCB is preferable for performance but technologically difficult and expensive

PCB thickness: effect on JER

- The rest of modules remains the same as default ILD model
- \rightarrow Whole detector size is bigger than default
- No significant dependence of JER on PCB thickness is observed

Dead channel effect

Dead channel effect

- If a few % dead cell is OK, we can increase yield for Si sensor and reduce cost.
- Some of the readout chip may be broken during construction or experiment
- Study procedure:

JER dependence on dead pixels / chips fraction

- Almost negligible effect with 10% of dead pixels
- Small effect with 5% of dead chips
- ECAL resolution degrades due to decreasing sampling fraction, but weak effect on JER.
- No serius breakdown. PFA is very robust against dead channels.

Number of layers

ECAL number of layers

$$S_{\rm Si} \propto \frac{\left[\pi (R_{\rm TPC} + e)^2 - \pi R_{\rm TPC}^2\right]}{e_1} \times L_{\rm Barrel} + \frac{\pi R_{\rm TPC}^2 \times e}{e_1}$$
$$= \frac{2\pi R_{\rm TPC} \times e + \pi e^2}{e_1} \times L_{\rm Barrel} + \frac{\pi R_{\rm TPC}^2 \times e}{e_1}$$

 S_{si} : total Si surface R_{TPC} : TPC radius e_1 : layer thickness e : total thickness of all layers L_{barrel} : Barrel length

- Five alternative SiW-ECAL models have been studied for baseline detector ILD_01_v05
- In all models: the same total W thickness and 1:2 between inner:outer W layers

ECAL model	W layers	Layer thickness (mm)
30 layers	20	2.1
	9	4.2
26 layers	17	2.4
	8	4.8
20 layers	13	3.15
	6	6.3
16 layers	10	4.0
	5	8.0
12 layers	7	5.32
	4	10.64
10 layers	6	6.65
	3	13.30

JER vs ECAL number of layers

Jet energy resolution vs $cos(\theta_jet)$

- Jet energy resolution presented in function of $cos(\theta)$ of first jet
- No significant problem found among full region of cos(θ)
- Example for Z→uds 91 GeV sample

Jet energy resolution

 Single JER as a function of number of layers for 91, 200, 360, 500 GeV Z → u/d/s.

- 9% of degradation when going from 30 to 20 layers for the worse case, 45 GeV
- effect is less important for higher energies

The error bars are taken from a fit.

$$\boxed{\frac{\operatorname{rms}_{90}(E_j)}{E_j} = \frac{\operatorname{rms}_{90}(E_{jj})}{E_{jj}}\sqrt{2}}$$

Photon energy resolution

- Photon energy resolution as a function of E_{photon} (left) and N-layers (right)
- Slight degradation observed going from 30 to 20 layers (≤ 9%) and quite significant with smaller number of layers (16 downto 10)

Summary

- The effect of guard ring, PCB thickness, dead pixel/chip fraction and number of layers were studied
- Guard ring affects JER linearly, ~6% @ 2mm
- With PCB thickness, no significant JER degradation observed (upto 2mm)
- IO% of dead pixels / 5% of dead chips have very little effect on JER
- ≤ 9% of degradation in JER if we choose to reduce number of layers from 30 to 20

<u>On going:</u>

Radius and length optimisation