G

NS,
ECOLE |N2P3
POLYTECHNI(T);.;E P

SiW ECAL optimisation in simulation

Trong Hieu TRAN
Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3

Summary of works done by:

Shion Chen, Daniel Jeans, Sachio Komamiya,
Chihiro Kozakai

University of Tokyo

Trong Hieu Tran

LLR, Ecole polytechnigue

Outline:

+ Introduction

* PCB thickness

* Guarding size of the sensors
+ Effect of dead pixels

+ Number of layers

ILD meeting
Cracow, September 2013



Introduction

s Motivation
#+ ILD i1s costly, especially SIW ECAL (~30% ILD's price)
+ SiW ECAL cost mainly due to: large sensitive area, large number of channels
+ Many studies of cost-effectiveness were/being realised
s Options:
+ Reduce ECAL number of layers
+ PCB thickness
# Guard ring size

+ Effect of S1 sensor dead area.
L 2

# All studies are done with Mokka & Marlin framework.

# Detector performance estimated via jet energy resolution (JER) with jets
recontructed by PandoraPFANew.

# TLD model: ILD_ol_v0O5 (DBD)
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Guard ring in SiW Ecal

* Sensor is matrix of PIN diodes
* Guard ring prevents surface leakage current — decreases dark current

and improves high voltage stability

* Study how geometrical inefficiency affects JER resolution
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value In simulation)
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@ Energy loss in gaps is compensated by
simple theta angle correction
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Guard ring in SiW Ecal: energy correction

* Energy decreases in gaps between slab sensors, alveolars, at module ends
and barrel/endcap gap.

* Direction resolution for © of 3.3 x 10 rad. Sufficient to give a correction
by ©.

* Correction is determined by gaussian+linear fit of simulated response to
10 GeV photon

* Energy drop ~10% @ 1.0mm, ~20% @ 2.0mm
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JER with different guard ring widths

* Z - uds events (Z decaying at rest). JER estimated by RMS90 method.

* Linear dependence of JER with 6% difference between O mm and 2mm widths
* Angular correction also helps resolution
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guard ring width dependence for barrel
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PCB thickness
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PCB thickness

Increases lateral shower size
More overlap of particle showers
Confusion increases = JER is expected to be worse at high E

Thin PCB is preferable for performance but
technologically difficult and expensive

Chips and bonded wires DBD; 0.811:[111 |
inside the PCB Engineering design: 1.2mm

Heat shield: 500 pm
(copper)

glue: 100 pm

wafer: 325 um
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PCB thickness: effect on JER

* The rest of modules remains the same as default ILD model
* = Whole detector size is bigger than default
* No significant dependence of JER on PCB thickness is observed

PCB thickness dependence for barrel
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Dead channel effect
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Dead channel effect

* If a few % dead cell is OK, we can increase yield for Si sensor and
reduce cost.

* Some of the readout chip may be broken during construction or
experiment

* Study procedure:

Simulation Digitization Clustering etc.. .

turn off some hits = “dead
channels”

randomly

Marlin
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JER dependence on dead pixels / chips
fraction
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* Almost negligible effect with 10% of dead pixels
* Small effect with 5% of dead chips
* ECAL resolution degrades due to decreasing sampling fraction, but weak
effect on JER.
* No serius breakdown. PFA is very robust against dead channels.
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Number of layers
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ECAL number of layers
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s Five alternative SiW-ECAL models

have been studied for baseline
detector ILD ol v0Ob5

s Tn all models: the same total W
thickness and 1:2 between
inner:outer W layers
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S, : total Si surface
R__ : TPC radius

TPC*

e,: layer thickness

e : total thickness of all layers

b

L, .. Barrel length

ECAL model | W layers | Layer thickness (mm)
30 layers 290 Z;
26 layers 187 Z;l
20 layers 163 36' .135
16 layers 150 ;18
12 layers Z 150?624
10 layers g 16?;.6350
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JER vs ECAL number of layers
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Jet energy resolution vs cos(6_jet)
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s Jet energy resolution presented in function of cos(0) of first jet

s No significant problem found among full region of cos(6)
# Example for Z—uds 91 GeV sample
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Jet energy resolution

@ Single JER as a function of
nhumber of layers for 91, 200,
360, 500 GeV Z - u/d/s.

s 9% of degradation when
going from 30 to 20 layers
for the worse case, 45 GeV

s effect is less important for
higher energies

J

J

rms90(E) / mean(E) [%]
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Barrel/Endcap overlap area
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Photon energy
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@ Photon energy resolution as a function of E

resolution

@ Slight degradation observed going from 30 to 20 layers ( < 9% )
and quite significant with smaller number of layers (16 downto 10)
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Summary

L

The effect of guard ring, PCB thickness, dead pixel/chip fraction and
nhumber of layers were studied

# Guard ring affects JER linearly, ~6% @ 2mm

With PCB thickness, no significant JER degradation observed (upto 2mm)
10% of dead pixels / 5% of dead chips have very little effect on JER

< 9% of degradation in JER if we choose to reduce number of layers from
30 to 20

L

L

L

On going:
# Radius and length optimisation
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