SiD Optimization Studies

Jan Strube Pacific Northwest National Laboratory

The Road Ahead

Tohoku Expressway to Ichinoseki

Our task for the coming years is to secure the required resources to build a detector

- that can deliver the physics we want to learn
- at the ILC with 250 GeV <= sqrts <= 1 TeV
 - o preferably with an upgrade path
 - competing with another detector
- in the Kitakami mountain site in Japan
 - o given the constraints of transport paths and the construction site
- that delivers competitive physics
- for 20+ years in a push-pull scenario

Resources

Resources come in different forms

- Financial Resources
 - Optimize cost performance of the detector
- Expertise
 - Make sure we don't fall into a generation gap
 - Single point of contact should not be a person
- Workforce
 - Productivity
 - Outreach

Interlude – Collaborative Tools

- http://forum.linearcollider.org/
 - Email is a very exclusive medium. Use the online forum for asking questions.
- https://confluence.slac.stanford.edu
 - Use the wiki to document workflows.
 - If you are just learning a new workflow, use this to jot down notes.

Goals for the Group

- ► To support members of the working group in their studies
- ▶ To disseminate working knowledge
 - Of the software and computing infrastructure
 - Of detector development activities
- To collaborate with the Physics group on defining the goals for optimization
 - Including use of analysis/reconstruction tools
 - Had talks on new jet finders, PID
- To coordinate efforts of optimizing SiD

Work Items -- Tracker

- Air Cooling considerations in tracker design
- Tracker barrel should be longer
 - Identified benefit during LOI, not implemented in simulation
- KPIX buffer size in the forward region might be too small

Work Items -- Calorimeters

- RPC simulation is inconsistent with beam test analysis
- Forward region layout leads to back-scatters into the FCAL (at 1 TeV. Needs to be studied at lower energies)
- MAPS for the ECAL silicon might allow synergies with ATLAS Hi-Lumi detector developments
 - If this helps to avoid range switching in the KPIX needs to be studied

Reconstruction Improvements

The ILC detectors are advertised as having unprecedented resolution. We currently don't take full advantage of this Pacific Northwes NATIONAL LABORAT

Goals for Physics Performance

- LOI and DBD analyses have shown very little difference between ILD and SiD
 - Partly due to simplifications in the simulation
 - Vertexing in ILD
 - HCAL in SiD
 - Partly due to choice of benchmarks. Covering the mainstay of the ILC physics program. Where are the corners?
 - Partly just because the detectors are very comparable.
 - Going forward we have to do a better job of mapping out the limitations of our detector to understand what to optimize.

Physics Requirements

Momentum resolution Higgs Recoil (at 350 GeV and above) $\sigma(p_T)/p_T^2 \sim 2-5 \times 10^{-5} \text{ GeV}^{-1}$

Jet Energy Resolution Separation of W/Z/H bosons: Gauginos, Triple Gauge Coupling $\sigma(E)/E = 3.5\%-5\%$

Flavor Tagging
Higgs Branching ratios $\sigma_{r\phi} \approx 5 \ \mu m \oplus 10 \ \mu m \ / \ (p[GeV] \sin^{3/2}\theta)$

Reality Check

- Where are we on the physics performance curve with these parameters. Is there a cliff?
- Tracking performance:
 - Higgs recoil @ 250 GeV not limited by pT resolution (→Tim)
 - Impact of low-pt tracks on vertex charge?
- Calorimeter Performance:
 - In physics events, jet clustering often times limits performance.
 - This might or might not improve in the future.
- Vertexing:
 - Excellent for b-tagging.
 - Should expand more into c-tagging and tau-vertexing.

Infrastructure

- Our current sim/reco infrastructure would take us probably to, but not through the TDR
 - Some investment needed NOW
 - → Norman's talk
- Computing for DBD happened mostly at RAL/CERN
 - Going forward PNNL will improve integration of resources into standard workflows.

RECAP OF ACTIVITIES

Topics Recap

- Single Particle studies DESY
 - Proof-of-principle comparison of scintillator vs. RPC HCAL
- ECAL optimization studies SLAC
 - Performance with different number and dimensions of W
- Tracking studies ANL
 - 5 single layers → 3 double layers
- Vertex reconstruction studies Bristol
 - Longer VTX barrel
- Forward region UCSC
- New Jet Finders Valencia
- Particle ID Tokyo

SiD Vertexing in the DBD

Excellent Flavor tagging performance at 1 TeV even in presence of background from production of e⁺e⁻ pairs and hadrons from the beams.

Proudly Operated by Battelle Since 1965

Vertexing -- Optimization

Changing the Vertex Barrel length, moving the disks out.

SiD Tracking in the DBD

Excellent impact parameter resolution and tracking efficiencies for high energies down to low angles (~10°).

Obvious weaknesses exist in the low-pt region.

y Battelle Since 1965

Tracking -- Optimization

Changed the layout of the vertex detector barrel from 5 single layers to 3

Impact parameter resolution shows no significant change with 3 double layers

decreases for 3 double layers in the VTX

Tracking efficiency vs. number of hits

From Sagar Setru, ANL

Calorimetry -- Optimization

 $\pi^0 o \gamma \gamma$ events 10+5 (2.5mm thins). Reco Photons 0+5 (50mm thin, 50mm thick) '+8 (50mm thin, 50mm thick) ಕ Average # π^0 separation π^0 MC Energy [GeV]

From Da An, **SLAC**

Trying to understand differences between technologies

Proudly Operated by Battelle Since 1965

Summary

- SiD is in a transitional state towards a real project
 - We have a site, but no host nation
 - · We have a detailed cost estimate, but no budget
- The detector is a crucial part to help make the physics case
 - Better technology (hardware or software) leads to better performance
 - We have weekly meetings where we exchange ideas.
 New members are welcome!
- For the next year, we should think about a document that would help streamline our efforts and lead into the TDR.

Studies of different calorimeter variants

Jan Strube (PNNL)

Introduction

- The current baseline of our RPC-HCAL simulation meets the performance requirements for an ILC detector
 - We know that the simulation does not adequately reproduce beam test performance
- Reducing the requirements for high voltage and gas lines simplify engineering
- The CALICE scintillator tile HCAL shows good performance in beam tests.
 - Investigate performance in SiD

The Setup

- Some simplistic study done during DBD (April 2012)
 - Replace RPC with scintillator (6 mm), 1 cm and 3 cm tiles
 - Simplistic digitization (Gaussian smearing)
 - Basic calibration
- This time:
 - More realistic dimensions of the active layers.

SLIC 3.0.1 (latest version found to work) lcsim-3.0.3 slicPandora from July 2013

Overview

- Evaluate the performance of a scintillator AHCAL variant
 - square tiles, 0.5, 1, 2, 3, 4, 5 cm side length
- Evaluate performance of a "generic DHCAL"
 - o using scintillator tiles with a threshold
- Using DESY AHCAL prototype dimensions
 - only varying tile size

http://agenda.linearcollider.org/event/6389/session/5/contribution/78/material/slides/0.pdf

Reminder: Studies during DBD

20 GeV Neutrons

20 GeV Neutrons II

New Scintillator variants

- During DBD scintillator variants were just implemented for cross-checking the reco
 - Was the first time Digital HCAL was used in PandoraPFA
 - It worked well enough
- For evaluating an AHCAL as a serious option, we need to go to a more realistic design

Layer cross section

HCAL Barrel Comparison

After: <slice material = "Steel235" thickness = "1.89*cm" /> <slice material = "Polystyrene" thickness = "0.3*cm" sensitive="yes"

limits="cal_limits" />
<slice material = "G10" thickness = "0.09*cm" />
<slice material = "Air" thickness = "0.52*cm" />

Status and Plans

- Calorimeter Variants:
- Pad sizes 0.5, 1, 2, 3, 4, 5 cm implemented and calibrated.
- Validation has started
- For a serious evaluation, we need a better understanding of
 - Reco software performance
 - Noise simulation
- Remove the air in the AHCAL
- How do we evaluate a choice of DHCAL and AHCAL given the current status of the simulation?