SiD Detector Baseline (A brief review)

Andy White
University of Texas at Arlington

- Basic design evolved up to the Detector Baseline Design (DBD)
- Essentially unchanged since then
- Short review of baseline technologies and options
- Discussion of the baseline, recent developments
- Physics and other arguments for changes
- Plan going forward

SiD Detector Rationale

A compact, cost-constrained detector designed to make precision measurements and be sensitive to a wide range of new phenomena

Overall dimensions (DBD)

Table 1.1.1: Key parameters of the baseline SiD design. (All dimension are given in cm.)

SiD BARREL	Technology	Inner radius	Outer radius	z max
Vertex detector	Silicon pixels	1.4	6.0	± 6.25
Tracker	Silicon strips	21.7	122.1	\pm 152.2
ECAL	Silicon pixels-W	126.5	140.9	\pm 176.5
HCAL	RPC-steel	141.7	249.3	\pm 301.8
Solenoid	5 Tesla	259.1	339.2	\pm 298.3
Flux return	Scintillator/steel	340.2	604.2	\pm 303.3
SiD ENDCAP	Technology	Inner z	Outer z	Outer radius
Vertex detector	Silicon pixels	7.3	83.4	16.6
Tracker	Silicon strips	77.0	164.3	125.5
ECAL	Silicon pixel-W	165.7	180.0	125.0
HCAL	RPC-steel	180.5	302.8	140.2
Flux return	Scintillator/steel	303.3	567.3	604.2
LumiCal	Silicon-W	155.7	170.0	20.0
BeamCal	Semiconductor-W	277.5	300.7	13.5

Tracking

Vertex

NO baseline selected – too early R&D: Chronopix, 3-D,...

Tracker

Si Strips + KPiX MAPS ??

Vertex technologies - Bruce Schumm, LCWS 2014

A number of sensor technologies being explored...

 Si diode pixels ("standard" technology)

 Monolithic designs (MAPS, Chronopix)

Vertically Integrated ("3D")
 Approaches (VIP Chip)

 High Voltage CMOS (snappyl timing)

Processor

Calorimetry

HCal-F 38t

Calorimetry

- SiD ECAL
 - Tungsten absorber
 - 20+10 layers
 - 20 x 0.64 + 10 x 1.30 X_0
- Baseline Readout using
 - 5x5 mm² silicon pads

An imaging calorimeter: 30 layers tungsten interleaved with 30 layers pixellated silicon

- SiD HCAL
 - Steel Absorber
 - 40 layers
 - $-4.5 \Lambda_i$
- Baseline readout
 - 1x1 cm² RPCs

Calorimetry – M.Stanitszki (SiD Tokyo)

Calorimetry – Hcal B. Schumm LCWS2014

Many alternatives under exploration (largely under CALICE umbrella)

Forward Calorimetry

Ongoing electromagnetic radiation damage studies (Si diode, GaAs...) within FCAL Collaboration umbrella

Annealing studies

90 Mrad exposure of N-type floatzone Si diode detector

SiD Muon System

SiD Baseline – long scintillator strips with WLS and SiPM readout

Alternative – RPC muon system – no recent development

The basic SiD detector design is 10 years old.

And we know (see the DBD) that we can deliver good results for the ILC Physics program, but...

- Can we gain (in physics performance) by changing overall dimensions and/or aspect ratio?
- Are we forever constrained by the size of the coil?
- Can we significantly reduce the material of the tracking system?
- Do we have the optimum arrangement and number of layers for the tracker?
- Can we optimize the barrel/forward transition region?

- Is the present ECal + HCal arrangement optimized for PFA?
- If we started with our present knowledge from PFA studies, would we arrive at the same calorimeter system design?
- Is the aspect ratio optimized?
- Are the ECal and HCal depths optimized?
- What are the optimum cell sizes for ECal, HCal?
- Can we gain by introducing on-detector logic/processing?
- In view of L* changes, what is the optimal layout of forward systems?
- What is the required functionality of the muon system as a calorimeter tail-catcher?

Discussion