The Scintillator Analogue HCAL for ILD and SiD - an update

Felix Sefkow

SiD workshop, SLAC, 13. Januar 2015

- Update: latest developments
- Specific questions:
- a) Remaining R&D which needs to be done if any ?
- b) What are the open systems and engineering issues
- c) Calibration, Stability, etc
- d) Cost estimates
- e) Future improvements which are on the horizon ...
- f) Simulation/software Status & Issues
- g) Services, Power

Recent highlights

• Test beam at CERN PS in Oct and Nov/Dec 2014

• Test beam at CERN PS in Oct and Nov/Dec 2014

• Test beam at CERN PS in Oct and Nov/Dec 2014

Scintillator HCAL

• Test beam at CERN PS in Oct and Nov/Dec 2014

• Test beam at CERN PS in Oct and Nov/Dec 2014

Scintillator HCAL

2nd gen AHCAL to test beam

- EUDET stainless steel prototype stack
- 4 large, 8 small HCAL layers, 3 strip-ECAL
- New fully HDMI-based DAQ
- Different types of tiles and SiPMS
- Germany, Russia, Czech, US, Japan

Scintillator HCAL

Event 180 - Run 20233

Felix Sefkow

New MPPCs

- Prototype from Hamamatsu
- Tested at Mainz and Munich
- Low inter-pixel cross-talk
- Very low noise above threshold

Surface-mounted SiPMs

- Originally proposed by NIU, now followed by different groups
- Vishnu Zutshi coordinating role
- First board assembled - tiles mounted by machine
 - important step towards mass production
- Board works on test bench, will be included in 2015 SPS run

Optimisation studies

- Effort in Cambridge, in CLICdp framework
 - software support by DESY
- Study absorber material, thickness, tile size and longitudinal segmentation
- On-going work, dependence on timing and energy cut-ofis still under study
- NB: number of layers has strong cost impact

Specific questions

Remaining R&D

- - if any? Oh, yes!
- Finalise and establish SiPM-tileelectronics integration design amenable at mass-production
- Develop automated production and quality assurance procedures
- Re-establish performance with integrated electronics:
 - ultimately need full hadronic prototype (20-40'000 ch.)
 - do not repeat Geant4 study
- Power pulsing
 - e.m. performance is sufficient
 - and harder anyway

Open systems & engineering issues

- Not many (for ILD), and on the way
- Dynamical seismic stability of absorber structure
 - simulations
 - validation?
- Leak-less under-pressure cooling system
- In-situ compensation of temperature variations (optional)
- For SiD, in addition:
- Active layer integration into absorber structure
- Space for interfaces, routing of services

Calibration and stability

MPV

μ. =173.790±1.034

σ, =52.635±0.834

- Cell-wise equalisation: MIP
- Saturation correction: gain
- All SiPM properties depend on one parameter
 - $-\Delta V = V V_{break-down}(T)$
- Needed time to find right procedures
 - some limitations from test bench data
 - large spread of SiPM parameters
- Guidance for future developments
 - e.g. gain stabilisation

Events

200

0 pixels

pixels

 $086e + 04 + 27^{\circ}$

 60.96 ± 0.55

.758e+04 ± 303

A₀ mean,

AHCAL cost drivers and scaling

- DBD costing is far from final, but much better than anything before
- Yet, many lessons learnt from 2nd generation prototypes
- What are the real cost drivers at present?
- What are the scaling laws?

- ILD scint HCAL total: 45M
- 10M fix, rest ~ volume
- 10M absorber, rest ~ area (n_{Layer})
- 16M PCB, scint, rest ~ channels
- 10M SiPMs and ASICs
- Not cost drivers:
- Scintillator 1.5M
- ASICs 1.8M
- Interfaces 1.4M
- ...

Improvements on the horizon

- Benefits of SiPM progress
- Device uniformity: dramatic simplification of commissioning procedures
- Many degrees of freedom become obsolete
 - no need anymore for bias adjustment to equalise light yield
 - no need anymore for pre-amp compensation of SiPM gain variation
 - no need anymore for channel-wise
 trigger thresholds
- Low noise: auto-trigger works

Scintillator HCAL

• Higher over-voltage possible - reduce temperature dependence

SiD workshop, 13.1.2015

Felix Sefkow

Improvements on the horizon

- Benefits of SiPM progress
- Device uniformity: dramatic simplification of commissioning procedures
- Many degrees of freedom become obsolete
 - no need anymore for bias adjustment to equalise light yield
 - no need anymore for pre-amp compensation of SiPM gain variation
 - no need anymore for channel-wise
 trigger thresholds
- Low noise: auto-trigger works

Scintillator HCAL

 Higher over-voltage possible reduce temperature dependence

Simulation software status & issues

- AHCAL test beam simulations include
 - variation of light yield (and calibration)
 - saturation (and correction)
 - finite photo-electron statistics
 - noise from data
 - 0.5 MIP threshold
- Scintillator non-uniformities had been implemented, not run routinely
 - negligible effect, CPU intensive
- Temperature variation and correction not included
- Constant terms of 1-2% measured and simulated
- ILD simulation includes threshold only
- The other effects are currently being implemented
- Effects visible for muons, small for electrons, and for electrons, and a state of the state of

Services, Power

- Detailed implementation in ILD engineering model and simulation
- Being realised with upcoming 2nd generation prototype

data concentrator

Scintillator HCAL

- Very nice and important progress recently
- Few remaining open issues being addressed
- Looking forward to the next steps

Back-up

AHCAL groups in CALICE

Google

thanks, Katja!

AHCAL physics prototype

7608 channels 38 layers Fe & W

1mm²

- Constructed in 2005-06: first device using SiPMs at large scale
- Now many followers: T2K, Belle2, CMS, medical applications,...
- Extremely robust: 6 years of data taking
 - 2006-7 CERN: Fe with SiW ECAL
 - 2008-9 FNAL: Fe with Si/Sci ECAL
 - 2010-11 CERN: Tungsten

Many trips with disassembly & reassembly of the calorimeter:

DESY - CERN - DESY - FNAL - DESY - CERN PS - CERN SPS

... and the SiPMs survived without problems!

Layer cross section

Electronics integration

0 Cm

- Basic unit: 144 tiles, 36x36cm²
- 36 ch. ASICs, power pulsed
 - self-trigger, 16x memory, ADC
- embedded LED system
- compact design

⁰ Distance between shower axes [mm] Beam Energy [GeV]

Validation of Simulation

- Validation with first generation prototype
- Published 8 paper

JINST 8, P09001 (2013) Scintillator HCAL

ILD optimisation

- Based on Pandora PFA
- Extensive studies done for the LOI
- AHCAL design parameters in plateau region
- Cost optimisation postponed

reflects shower feature size rather than particle separation

Felix Sefkow SiD workshop, 13.1.2015

AHCAL implementation

- Short barrel (2x 2350 mm)
 - big endcap R = 3190 mm
- 8-fold symmetry
 - 16 sub-modules
- 6 λ deep, 48 layers x 2 mm
 - R = 2058-3410 mm
 - $-8000m^{2}$
- Cracks filled with steel
- Embedded front end electronics
- Accessible interfaces

Mechanical prototypes

- Horizontal and vertical test structures built
 - used cost-effective roller leveling no machining
- Tolerances verified: 1mm flatness over full area
- To be used for integration studies, test beams
 - and earthquake stability tests

SiPM response

Calibration: look at full chain

- LOI validation: IDAG triggered study of required precision and luminosity for calibration
- Using track segment finding established in test beam showers
- Studied also impact of systematics due to calibration uncertainties on single particle and jet resolution
- Very insensitive to single channel effects
- For averages, statistics is not an issue
- Test benches: "Precision" = measurement accuracy or device-todevice non-uniformity

Calice Analysis note 18 and ILD note

28

Felix Sefkow SiD workshop, 13.1.2015

Scintillator HCAL

Industrialisation: Numbers!

- The AHCAL
- 60 sub-modules
- 3000 layers
- 10,000 slabs
- 60,000 HBUs
- 200'000 ASICs
- 8,000,000 tiles and

- One year
- 46 weeks
- 230 days

• 2000 hours

• 100,000 minutes

• 7,000,000 seconds

SiD workshop, 13.1.2015

Scintillator HCAL

Felix Sefkow SiD

ITEP

Quality control and production

- Can be done: our engineers are looking forward to it
- There are interesting problems to solve
- Some efforts started:
- SiPM and tile QC and characterisation
 - with UV light and beta source
 - fully automatised, fast parallel readout
- LED ad ASIC test^e
- HBU assembly
 - place tiles, so
 - close relatior coupling
 - impact on (CALICE Meeting Annecy 09/2013

Scintillator HCAL

Flexible test beam roadmap

- 2013-14:
 - e.m. stack, 10-15 layers, ~2000 ch
- 2015-16:
 - hadron stack w/ shower start finder
 - 20-30 ECAL and HCAL units, \sim 4000 ch
- 2017-18:
 - hadron prototype, 20-40 layers, 10-20,000 ch
- Gradual SiPM and tile technology down-select
- Exercise mass production and QC procedures

Scintillator tile options

CPTA, KETEK or Hamamatsu sensors

no WLS fibre

individually wrapped; KETEK sensors

Hamamatsu sensors, on PCB surface

- Simplification, industrialisation
- Blue-sensitive sensors: eliminated WLS fibre and reflector
 - Developed direct coupling from side or from top
- Megatiles interesting alternative for mass assembly
 - need to optimise design and production together

SiPM improvements

- Dynamic field, driven by medical applications (PET)
 - commercial use requires uniform devices, too, and moves to larger channel counts
 - SensL quotes 0.25V bias spread for several 100,000 devices
- 1€ per piece not unrealistic
 - Hamamatsu, SensL
- Improved performance in today's prototypes
 - today's sensors (Russian, German, Irish, Japanese) have 100x less noise than in physics prototype

