

Status of the DHCAL Project

José Repond Argonne National Laboratory

SiD Collaboration Week January 12 – 14, 2015 SLAC

Outline

The DHCAL project

Recent Results

Identified Issues

R&D to be completed

On a personal note

The Digital Hadron Calorimeter (DHCAL) I

Active element

Thin Resistive Plate Chambers (RPCs)

Glass as resistive plates Single 1.15 mm thick gas gap

Readout

1 x 1 cm² pads 1-bit per pad/channel → digital readout 100-ns level time-stamping

Calorimeter

54 active layers

1 x 1 m² planes with each 9,216 readout channels 3 RPCs (32 x 96 cm²) per plane

Absorber

Either Steel or Tungsten

The Digital Hadron Calorimeter (DHCAL) II

DHCAL = First large scale calorimeter prototype with

Embedded front-end electronics

Digital (= 1 - bit) readout

Pad readout of RPCs (RPCs usually read out with strips)

Extremely fine segmentation with 1 x 1 cm² pads

DHCAL = World record channel count for calorimetry
World record channel count for RPC-based systems

479,232 readout channels

DHCAL construction

Started in Fall 2008 Completed in January 2011

This is only a prototype For a colliding beam detector multiply by ×50

Test beam activities

- ~ 5 month in the Fermilab testbeam (Steel absorber)
- ~ 5 weeks in the CERN testbeams (Tungsten absorber)

J. Repond - The DHCAL

Recent Results I

Burak Bilki

Response of Fe-DHCAL to Pions

(Density-weighted) calibration improves linearity Close to linear up to 60 GeV Fit to power law aE^m, where m is measure of saturation

Hadronic Resolution

Calibration improves resolution somewhat Saturation (=multiple hits/pad) degrades resolution > 30 GeV Stochastic term of $64\%/\sqrt{E}$ (adequate for hadron calorimetry)

Recent Results II

Coralie Neubüser

Fe-DHCAL: Software compensation

Define hit density (= for every hit, the number of neighboring hits within $3 \times 3 \times 3$ array) Define χ^2 to linearize positron or pion response (use only subsets of the data for this) Minimize χ^2 by adjusting weights of individual hits depending on their hit density

Apply weights to pion data

Linearize positron/pion response → energy reconstruction

Pion response 6 – 60 GeV

SC → significant improvement \rightarrow 7 – 15 %

Method still being optimized

Recent Results III

Configuration with minimal absorber structure

Removed steel absorber plates 50 layers with each 0.4 X_0 or 0.04 λ_I (detector cassette, glass, readout board)

Data set

Muons, **positrons** and pions Momentum 1 - 10, 32 GeV

All Hitdistribution of positrons

→ as expected

Energy resolution of positrons

Response

Resolution

Spectacular! (Corrected for non-linearity)

Comparison to GEANT4 simulations coming soon

Recent Results IV

Validation of 1-glass RPC design

Design proposed and developed by Argonne group Built 2 large chambers (32 x 48 cm²) Tested with Cosmic Rays and in Fermilab testbeam

Conclusion → **Performance** as expected

Identified Issues I

Loss of efficiency

During operation of DHCAL in test beam: loss of efficiency on some chambers Problem traced back to chemical reaction at HV lead increasing resistivity Some chambers recovered by increasing the applied HV

Solution → use of Kapton film as resistive layer (commercially available)

Bending of boards

Readout boards initially flat to within <1 mm Noticed loss of efficiency in center of chambers in CERN data (2012)

Traced back to bending of boards

Solution → mechanically constrain boards within cassette (SDHCAL did that)

Identified Issues II

Loss of efficiency at borders

Chambers inefficient close to the physical borders
Effect larger than anticipated
Traced back to increased gap size due to misshapen channels

Solution → **improved shape of channels**

Equalization of the RPC responses

(In simulation) different dependence of the response to the RPC performance parameters for different particles

performance parameters for uniferent particles

Solution → Equalization of response for each particle type individually (unpleasant!)

Identified Issues III

Equalization of the RPC responses

Overcorrection for multiple avalanches on single pad Leads to improved linearity (contrary to MC predictions)

Solution → Density-weighted calibration (work still ongoing)

Identified Issues IV

Simulation of RPC response

Standalone program (RPC_sim)
Explored a number of different functional forms to spread charge on readout plane

Currently best version → **Sum of 2 Gaussians** (still not entirely satisfactory)

Identified Issues V

No identified issues without proposed solution!

R&D still to be completed I

HV distribution system

Every of the ~6,000 layers will need to be controlled individually University of Iowa started developing a system to distribute HV to multiple channels

Turn on/off individual channels

Monitor current and voltage

Adjust individual channels by several hundred volt

Prototype (1 channel) tested successfully

Status → activity stopped due to lack of funding

Gas recycling system

Status → activity stopped due to lack of funding

R&D still to be completed II

Development of high-rate RPCs

Typically glass RPCs lose efficiency for rates above 100 Hz/cm²

Rate capability sufficient for most of ILC hadron calorimeter, but marginal for forward region

Rate capability depends on bulk resistivity of resistive plates ($\sim 10^{13} \ \Omega cm$)

Together with COE College (lowa) developing semi-conductive glass

First RPCs with new glass ($\sim 10^{11} \ \Omega cm$) built and tested

Conclusion → **rate capability improved**

New glass with lower bulk resistivity in hand (not yet measured)

Status → work on hold

Mechanical design of hadron calorimeter

Started development some time ago

Status → work on hold

R&D still to be completed III

Unless we complete this R&D, an RPC-based imaging hadron calorimeter can not seriously be proposed for an ILC detector

On a personal note...

For FY2015 the DOE cut all funding for LC related activities

- → apart from a meager amount for accelerator R&D
- → against P5 recommendations

As of the start of FY2015 all **DHCAL activities** lost their support at Argonne

- → leaves our collaborators (CERN, COE, Iowa, UTA, China) hanging
- → in the past 10 years we were leading the development of the DHCAL technology, which will now be pursued by others (China and France with the exclusion of the U.S.)

The global impact of a U.S. withdrawal from ILC/CALICE is not clear

- → But it will certainly not help getting the ILC approved by the Japanese Government
- → The U.S. will loose its leadership in the development of new calorimeter technologies
- → Argonne's future participation in the construction of the calorimeter for ILC/CLIC will face significant difficulties (loss of expertise, manpower, starting all over again....)

