CLICdp report

Rosa Simoniello (CERN) on behalf of the CLICdp collaboration

SiD workshop 12-14 January 2015, SLAC

Outline

- Overview of physics studies
 - Summary of the Higgs results
 - BSM analyses planned
- Detector optimisation studies
 - Parameters for simulation models
- Vertex R&D
 - Test beam & simulation studies
 - Studies with mock-up
- W A-Hcal results
- Software
 - DD4Hep
 - Tracking code status

PHYSICS PROGRAM

CLIC Higgs physics

- Rich physics program in 3 energy stages: ~350 GeV, 1.4 TeV, 3 TeV
- In the last year focus on Higgs physics
 - Global fit: Model independent and high precision determination of the Higgs couplings and Higgs mass width

- *Results limited by 0.8% on* g_{HZZ} from σ (HZ) measurement
 - Already included hadronic Z decays \rightarrow substantial improvement (next slide)

Rosa Simoniello - SiD workshop - 12/01/2015

Rare Higgs decay

Higgsstrahlung – hadronic Z decay

- Centre of mass energy 350 GeV, L = 500 fb⁻¹
- Large improvement in the precision measurement of g_{HZZ} including hadronic Z decay
 - $\Delta(g_{HZZ})/g_{HZZ} \approx 2.1\%$ only $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ events
 - □ $\Delta(g_{HZZ})/g_{HZZ} \approx 0.9\%$ Z→qq events
- $Z \rightarrow qq$ reconstruction *slightly depends on Higgs decay mode*
 - Careful choice of the selection variables
 - Extreme variation of the SM BRs lead to bias < 0.5 stat error</p>

Rosa Simoniello - SiD workshop - 12/01/2015

CÉRN

Physics workplan

- CLIC Higgs overview paper is being finalizing
- Next: Beyond SM physics
 - Benchmark studies: SUSY, exotic models (Z'), modelindependent Dark Matter searches/exotics
 - High precision SM measurements: top physics (asymmetry, top quark couplings), W high precision measurements, Higgs properties measurements, reanalysis of double Higgs production (Higgs self coupling and quartic coupling)

 \rightarrow Forward topologies \rightarrow Requirements on detector layout to be taken in consideration in the detector optimisation effort

DETECTOR OPTIMISATION

Detector optimisation status

Finalize detector model (including software and validation) by **June 2015**

Vertex detector

- Requirements for vertex detector:
 - Efficient heavy quark tagging \rightarrow used as performance metric
 - □ Low material budget \rightarrow air cooling through spiral geometry. Realistic model: 0.2%X₀ per single layer
 - □ Occupancy of few %→ first layer layout → increase *R* to 31 mm to compensate the lower B

Rosa Simoniello - SiD workshop - 12/01/2015

Main tracker and B choice

2 extra

R = 1.5m

L/2 = 2.3m

disks

- Gluckstern's formula $\frac{\sigma(p_{\rm T})}{p_{\rm T}^2} \propto \frac{\sigma}{\sqrt{N+4}BR^2}$
- Improvement *extending tracker size*
 - $\square R = 1.25 \text{ m} \rightarrow R = 1.5 \text{ m}$
 - □ $L/2 = 1.6 \rightarrow L/2 = 2.3 m$ (add disks)
- Worsening *decreasing B* (~10% for each 0.5 T)
 - For B = 4T, after trk extension similar or still better performance than CDR case

Rosa Simoniello - SiD workshop - 12/01/2015

Hcal barrel: absorber material

	# L	Abs Thick	Tot Depth	Tot Thick	ТС
W	75	10 mm	7.92 λI	1322.5 mm	100 ns
Fe	60	19 mm	7.55 λI	1609 mm	10 ns

- Realistic Fe cassette included
- Jet energy resolution study
- *W*/*Z* separation study
 - $\Box ZZ \rightarrow \nu \nu dd \text{ and } WW \rightarrow \nu lud \text{ events}$
- → Fe as absorber material in simulation cheaper, easy to work with, similar performance as W

Rosa Simoniello - SiD workshop - 12/01/2015

CERN

Hcal cell size optimisation

- Jet resolution dominated by *confusion term* for high energy jets.
- Confusion term increases with *cell size* when 10 ns timing cut is applied
 → improvement of the jet resolution for small cell size
 - \rightarrow dependence on timing cut under investigation

Hardware requirements

- **Excellent single point resolution:** $\sigma = 3\mu m \rightarrow pixel pitch 25 \mu m$
- Low material budget: sensor + readout 0.1%X₀ → 50µm sensor on 50 µm ASICs supports/cabling/others 0.1%X₀
- Fast readout: 10 ns slicing time

 \rightarrow Intense R&D

- 50-300 μ m sensor bump-bonded to Timepix chips, 55 μ m pixel pitch \rightarrow DESY test beam (5.6 GeV e) and CERN PS test beam (10 GeV π), EUDET telescope
- DC-coupling with amplifier input on the readout chip

Rosa Simoniello - SiD workshop - 12/01/2015

750 µm Timepix

Results for thin sensors

Rosa Simoniello - SiD workshop - 12/01/2015

Pixel sensor simulation

- Allpix simulation framework based on GEANT4
- Configuration of Si response and readout chip
- Telescope and DUT simulation
- Data and simulation in good agreement but for charge sharing → under investigation

- **TCAD** simulation of field behaviour at the edge of a sensor
- Active edge sensors to reduce material budget and dead areas
- Voltage drop between the edge and the first pixel → Floating guard ring

HV-CMOS active sensors

. .

Forced-air and thermal mock-up

- Real-size mock-up to verify simulation and study air-flow feasibility, vibrations and temperature
 - □ ~500 W heat load to extract (50mW/cm²) \rightarrow T^{Si} < 40°C after power pulsing
 - **Ο** Vibration acceptable at 1-2 μm RMS amplitude
- Bending/stiffness of low mass supports (0.05%X₀)

W A-HCAL STATUS

Rosa Simoniello - SiD workshop - 12/01/2015

CALICE Tungsten Analogue Hcal

- Test beam data : e, π, K and p at 1-300GeV
- Good linearity, resolution: $\frac{\sigma_E}{E}(\pi^+, E = 3 10 GeV) = \frac{(61.8 \pm 2.5)\%}{\sqrt{E[GeV]}} \oplus (7.7 \pm 3.0)\% \oplus \frac{0.070 GeV}{E[GeV]}$
- Data-simulation in general in agreement
 room for improvement in shower shape description
- Comprehensive study of all relevant *systematic uncertainties*
- → Publication including beam momenta up to 150 GeV in early 2015

- *Full detector description*: geometry, materials, visualization, parameters for readout, alignment, calibration, etc.
- *Consistent Description*: Single source of detector information for display, simulation, reconstruction, analysis, alignment, etc.
- Detector Palette for CLIC based on SiD model → example detector model for testing and to be updated with the most recent subdetectors
- *Validation* of simulation and reconstruction interface on-going

Rosa Simoniello - SiD workshop - 12/01/2015

DDRec: Surfaces for tracking

- Use material properties (A, Z, ρ , X₀, λ_1) to compute effects of *energy loss* and *multiple scattering* along path length between surfaces
- Run existing reconstruction code with the new simulation model

Tracking code needs a special interface to geometry for track extrapolation and Kalman filter

Measurements and dead material *surfaces* attached to volumes:

- local coordinates
- Inner and outer material and thickness

Rosa Simoniello - SiD workshop - 12/01/2015

Tracking code

- ILD vertex software based on *cellular automaton* and on *mini-vectors*
 - Accounts for double layers
 - Kalman filter implemented
- Extend to full Si tracker
 - Promising results for single μ
 - Next: performance tracking in jets $(Z \rightarrow qq)$
 - Currently use of ILD detector model (extension to SIT)
 - Next: use CLIC detector through DD4Hep

Rosa Simoniello - SiD workshop - 12/01/2015

ILCDirac

- ILCDirac: Complete Grid Solution
- Workload management, data storage, production system, bookkeeping
- Used by CLICdp, SiD, ILD, CALICE
 - Grid interface for users and production to run any LC software
- <u>https://twiki.cern.ch/twiki/bin/view/CLIC/DiracUsage</u>

Rosa Simoniello - SiD workshop - 12/01/2015

Collaboration

CLICdp collaboration keeps growing ③ 25 institutes

- CLICdp web site: <u>http://clicdp.web.cern.ch/</u>
- CLICdp next workshop 27-30 January: <u>https://indico.cern.ch/event/336335/</u>
- We are close and we have links with ILC community

Conclusion

- Higgs paper being finalised!
- Good progress in the detector model optimisation:
 - Only few parameters missing
 - □ Software starting to come together → validation ongoing, encouraging results
- Intensive vertex R&D
 - Test beam results from DESY, CERN PS, CERN SPS campaigns
- A-Hcal analysis of 2011 test beam data is being finalised

Thanks for your attention!

Cooling: simulations

Cooling studies for CLIC vertex detector

- ~500 W power dissipation in CLIC vertex area
- spiral disks allow air flow through detector
- ANSYS Computational Fluid Dynamic (CFD) finite element simulation
- \rightarrow air cooling seems feasible
- 5-10 m/s flow velocity, 20 g/s mass flow

Cooling: experimental verification

- built mock-up to verify simulations (temperature, vibrations)
- measurements on single stave equipped with resistive heat loads:
 - air flow
 - temperature
 - vibrations (laser sensor)
- · comparison with simulation

Temperature increase: measurement + CFD simulation

F. Nuiry, C. Bault, F. Duarte Ramos, M.-A. Villarejo Bermudez, W. Klempt

Detector	# Layers	Abs Thick	Cass. Thick	Air	Total Depth	Total Thickness	Inner R	Outer Face Position	Outer Radius
		mm	mm	mm	#λI	mm	mm	mm	mm
CLIC_ILD_CDR	75	75 10	5*	1 5	.5 7.42	1237.5	2058	3295.5	3341.2
CLIC_SID_CDR	75		(*Scint)	1.5		1237.5	1447	2684.5	2721.7
W + cassette	75	10	4.8	2.7	7.92	1322.5	1750	3072.5	3115.1
W + cassette	70	10	4.8	2.7	7.40	1235	1750	2985	3026.4
Fe + cassette	60	19	4.8	2.7	7.55	1609	1750	3359	3405.6
Fe + cassette	70	16	4.8	2.7	7.93	1661	1750	3411	3458.3

Rosa Simoniello - SiD workshop - 12/01/2015

Data e+: a = (29.6 ± 0.5)% and b = (0.0 ± 2.1)%, c fixed to 36MeV **MC e+:** a = (29.2 ± 0.4)% and b = (0.0±1.5)%, c fixed to 36MeV

Rosa Simoniello - SiD workshop - 12/01/2015

Data π +: a = (61.8 ± 2.5)% and b = (7.7 ± 3.0)%, c fixed to 70MeV **Data** π -: a = (63.9 ± 2.4)% and b = (3.2 ± 6.9)%, c fixed to 70MeV

Ext to SIT 2 "double" layer

Mini – Vector Tracking

- Mini vector formation
 - 1) Hits in adjacent layers (dist 2mm) with max distance 5mm
 - 2) Or $\delta\theta$ between hits in adjacent layers (cut can go up to 0.1^o)
- Divide VXD into θ , ϕ sectors
 - Try to connect mini vectors in neighbouring sectors
- Cellular automaton criteria
 - > ϕ , θ pointing direction of the mini vectors
 - No zig-zag (2 MV segments)
- ttbar sample, pair bkg included for $\sqrt{s} = 500$ GeV
- Fast CMOS vertex detector

	Dist < 5mm	δΘ <0.5 ⁰	δΘ <0.3 ⁰	δΘ <0.1 [°]
VXD hits	10 ⁵	10 ⁵	10 ⁵	10 ⁵
MiniVectors	3x10⁵	10 ⁵	6x10⁴	2x10 ⁴
Connections	O(10 ⁵)	O(10 ⁵)	< 10 ⁵	~ 10 ⁴
Raw tracks	O(10 ⁶)	O(10 ⁶)	O(10 ⁵)	< 10 ⁵
Time	~10min	~ 2min	~ 1min	~ 20 s
				1.0

AWLC14, Fermilab, May 2014 Y. Voutsinas

ttbar, $\delta\theta$ of hits belonging to a MV based on MC info

1	0

Comparison with FPCCD Tracking II

Sample: ttbar, \sqrt{s} = 500 GeV, fast CMOS VXD, pair bkg overlayed, 120 events

- Ghost tracks / evt ($P_{T} > 1 \text{ GeV}$)
 - ➢ FPCCD: ~ 10
 - ≻ CA: ~ 11
- Time / evt
 - FPCCD: ~ 75 s
 - CA: ~ 25 s

ilab, May 2014

Cellular automaton criteria

Table 2.1.: The different criteria available in the ${\tt KiTrack}$ package

(The time is given relative to the fastest criterion)

Rosa Simoniello - LCSW14

FROM R. Glattauer's THESIS

name	hits	time	description
DeltaRho	2	1.00	The difference of the distances to the z-axis:
			$\Delta \rho = \sqrt{x_2^2 + y_2^2} - \sqrt{x_1^2 + y_1^2}.$
RZRatio	2	1.00	The distance of two hits divided by their z -
			distance: $\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$
	-	1.04	$\frac{ \Delta z }{ \Delta z }$
Straight IrackRatio		1.04	Best suited for straight tracks: If the line be-
			tween the two hits points towards IP. Calcu-
			lated is $\frac{z_1}{z_2}/\frac{z_2}{z_2}$, where $\rho = \sqrt{x^2 + y^2}$. Is equal to
D = 14 = D1 - :		1.20	The difference between the translation of two
DeltaPhi		1.30	The difference between the ϕ angles of two
			into in degrees. φ is the azimuthal angle in the maximuthal angle in
			the <i>x</i> - <i>y</i> plane w.r.t. the positive x axis: $\phi = \frac{1}{2}$
HaliwWithID	0	1 49	atall2 (y, x) .
		1.40	through the IP. A girele is calculated from the
			two hits and the IP. Let α be the angle between
			two first and the first bet α be the angle between the contor of the circle and two hits. For a per-
			fact holix α should be equal for all pairs of hits
			on the holix. The coefficients for the first and
			last two hits (including the IP) are compared:
			$\frac{\alpha_1}{\alpha_2}$ This is 1 for a perfect helix around
			$\Delta z_1 / \Delta z_2$. This is 1 for a perfect heir around the z-axis
ChangeBZBatio	3	1 23	The coefficient of the BZBatio values for the
ChangertZittatio		1.20	two 2-hit-segments. Ideally this would equal 1.
2DAngle	3	1.23	The angle between two 2-hit-segments in the
	Ĭ		x-y plane.
2DAngleTimesR	3	1.46	The 2DAngle, but multiplied with the radius
0			of the circle the segments form, in order to get
			better values for low momentum tracks.
3DAngle	3	1.25	The angle between two 2-hit-segments.
3DAngleTimesR	3	1.48	3DAngle times the radius of the circle.
PT	3	1.30	The transversal momentum as calculated from
			a circle in the x - y plane. This criterion includes
			knowledge about the magnetic field and in this
			way differs from the rest. A more basic version
			would be to either use the radius of the circle or
			its inverse Ω . Using p_T was chosen for reasons
			of readability.

IPCircleDist	3	1.30	From the 3 hits a circle is calculated in the x - y plane and the distance of the IP to this cir-
			cle is measured.
IPCircleDistTimesR	3	1.30	Distance of the IP to the circle multiplied with
			the radius of the circle to take into account
			higher deviations for low transversal momentum
			tracks.
DistOfCircleCenters	4	1.66	Circles are calculated for the first and last 3
			hits. The distance of their centers is measured.
RChange	4	1.66	The coefficient of the radii of the two circles.
DistToExtrapolation	4	2.21	From the first 3 hits the relation of α to Δz is
			calculated. This is used to predict x and y of the
			fourth hit for the given z-value. The distance of
			this prediction to the actual position in x and
			y is measured.
NoZigZag	4	2.30	A criterion to sort out tracks that make a zig
			zag movement. The 2-D angles are measured
			for the first and the last three hits. Then they
			are transposed to the area of $-\pi$ to π and mul-
			tiplied. A zig-zagging track would give angles
			with different signs and therefore a negative
			multiplication result.
2DAngleChange	4	2.30	The coefficient of the 2-D angles.
3DAngleChange	4	2.41	The coefficient of the 3-D angles.
PhiZRatioChange	4	2.50	The coefficient of the PhiZRatio of the first 3
-			and the last 3 hits.

Workflow & B field map

Rosa Simoniello - LCSW14

Efficiency and p_T resolution

- Geometry used: CLIC_2014_L5m_R7m (CLIC_SiD with reduced endcaps)
- Degradation in reco efficiency and bias in the p_T reco due to the assumption of homogeneous field in the reconstruction
 - In CLIC_SiD *helical* extrapolation and fit

Single µ⁻_

Homo B = 5 T

p = 100 GeV

1600

1400

1200

1000

800

600

400

200

0

90

θ [°]

80

70

-0.01<u></u>

10

20

30

40

 In ATLAS use of *numerical integration method* (Runge-Kutta)

CLICdp work in progress

CERN

10

20

30

40

50

60

Simulation

√s = 3 TeV

 $\Delta p_T / p_{T,truth}^2$

0.01

0.005

-0.005

-0.01

0

80

90

θ [°]

70

50

60

Tracking extrapolation

Global helical model:

- Homogeneous B
- **Ο** Circumference in rφ plane
- Straight line in Sz plane
- 5 parameters $(\kappa, d_0, z_0, \phi_0, tan\lambda)$

• Wise-segmented helix:

- Helix from layer to layer (homo B)
- At every measurement update the B field and the reference frame
- Impose a "sufficient" number of these steps (not only on measurement plane)
- Kalman filter implementation

soft-pub-2007-005

Runge-Kutta based extrapolator:

- General method, any assumption about B
- Solve second order differential equation of motion to compute the intersection of the trajectory with the destination plane

Rosa Simoniello - LCSW14

QD0 and Yoke endcap

Two main configurations under study:

- QD0 partially in the detector $\rightarrow L^* = 4.5m$
- QD0 out of the detector $\rightarrow L^* = 6m$
 - Extended *HCAL acceptance*
 - Interest in high energy and t-channel physics
 - Quantitatively estimation of the gain for physics analysis on going
 - Loss in *luminosity* to be studied
 - *Reduce yoke* endcap: 2.8m \rightarrow 1.4m
 - Add ring coils to reduce the stray
 - field < 3.2mT at R=15m
 - power consumption: 2 x 2260 kW
 - Inside the detector region:
 - 4% reduction of the B field
 - 23% increase of the B distortion

5

cavern wall

RC 4-

RC 3-

RC 2 ~

RC 1

-L=5m; with RC, no iron wall

2

2

Z-axis coordinate, in m

1

6

5

3

2

1

n

Bz(R=0), in T