Using the Hadronic Recoil Cross Section Measurement in Higgs
 Coupling Fits

Tim Barklow (SLAC) Jan 12, 2015
$\star \mathrm{HZ}$ is essential for unique Model Independent Higgs programme at the ILC

\star No need to run at peak of cross section

- Event rate $\propto \sigma \times \mathcal{L}$
- $\mathcal{L} \propto \gamma_{\mathrm{e}} \propto \sqrt{S}$
\star Can we make a M.I. measurement of $\mathbf{s}(\mathrm{HZ})$ at $\sqrt{s}>250 \mathrm{GeV}$

Leptonic Recoil Mass

$$
\frac{\Delta \sigma}{\sigma}=4.7 \% \Leftarrow \mu \mu \text { only } \longmapsto \frac{\Delta \sigma}{\sigma}=6.5 \%
$$

$$
\text { cf } \frac{\Delta \sigma}{\sigma}=3.1 \%
$$

$$
\text { for } 250 \mathrm{fb}^{-1} @ \sqrt{\mathrm{~s}}=250 \mathrm{GeV} \text {, }
$$

$$
\mu^{+} \mu^{-} \text {only }
$$

HZ Hadronic Recoil

ilf
\star Argument hinges on ability to exploit HZ production: $Z \rightarrow q q$

- Much larger branching ratio:
- 60% Z \rightarrow qq
- 3.5% Z $\rightarrow \mu \mu$
\star But model independence is the issue...

> Muons "always" obvious

Here jet finding blurs
separation between H and Z
Different efficiencies
for different Higgs decays

* Leptonic recoil at $\mathbf{2 5 0} \mathbf{G e V}$:

$$
\frac{\Delta \sigma}{\sigma}=2.6 \% \quad \text { ILC: } 250 \mathrm{fb}^{-1}
$$

夫 Hadronic recoil at 350 GeV :

$$
\frac{\Delta \sigma}{\sigma}=1.7 \%
$$

ILC: $\mathbf{3 5 0} \mathbf{f b}^{-1}$

Mark Thomson's analysis of $\sigma(Z H)$ with $Z \rightarrow q \bar{q}$ uses two measurements to obtain the cross section:

 $\sigma(Z H)=\sigma(Z H) \cdot B R($ visible $)+\sigma(Z H) \cdot B R$ (invisible)$\sigma(Z H) \cdot B R($ visible $)$
^ Combining visible + invisible analysis: wanted M.I.

- i.e. efficiency independent of Higgs decay mode

Decay mode	$\varepsilon_{\mathscr{L}>0.65}^{\text {vis }}$	$\varepsilon_{\mathcal{L}>0.60}^{\text {vis }}$	$\varepsilon^{\text {vis }}+\varepsilon^{\text {invis }}$
$\mathrm{H} \rightarrow$ invis.	$<0.1 \%$	22.0%	22.0%
$\mathrm{H} \rightarrow \mathrm{q} \overline{\mathrm{q}} / \mathrm{gg}$	22.2%	$<0.1 \%$	22.2%
$\mathrm{H} \rightarrow \mathrm{WW}$	21.6%	0.1%	21.7%
$\mathrm{H} \rightarrow \mathrm{ZZ}^{*}$	20.2%	1.0%	21.2%
$\mathrm{H} \rightarrow \tau^{+} \tau^{-}$	24.7%	0.3%	24.9%
$\mathrm{H} \rightarrow \gamma \gamma$	25.8%	$<0.1 \%$	25.8%
$\mathrm{H} \rightarrow \mathrm{Z} \gamma$	18.5%	0.3%	18.8%

$\sigma(Z H) \cdot B R($ invisible) BDT Selection

\star Assuming no invisible decays (1 sigma stat. error):

$$
\Rightarrow \Delta \sigma_{\text {invis }}= \pm 0.57 \%
$$

(CLIC beam spectrum, $500 \mathrm{fb}^{-1} @ 350 \mathrm{GeV}$, no polarisation)

In order to use this cross section measurement in our Higgs analyses we have to quantify the penalty associated with the fact that
$\sigma(Z H) \cdot B R(v i s i b l e)$ is "almost model independent". By how much must we blow up $\Delta \sigma(Z H) \cdot B R($ visible) to account for the fact that the efficiencies differ by as much as 7% ?

^ Combining visible + invisible analysis: wanted M.I.

- i.e. efficiency independent of Higgs decay mode

We have used an approach where we use all of our $\sigma \cdot B R$ measurements for visible Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(\mathrm{ZH}) \cdot B R$ (visible). It is then straightforward to propagate the $\sigma \cdot B R$ errors, as well as the systematic errors on the individual decay mode efficiencies for the $\sigma(Z H) \cdot B R($ visible) selection, to the error on $\sigma(Z H) \cdot B R$ (visible).

Let
$\Psi \equiv \sigma(Z H) \cdot B R($ visible $)$
$\Omega=$ Number of signal + background events in $\sigma(Z H) \cdot B R($ visible $)$ analysis
$\mathrm{B}=$ Predicted number of background events in $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=$ Average efficiency for signal events to pass $\sigma(Z H) \cdot B R($ visible $)$ analysis
$L=$ luminosity

$$
\Psi=\frac{\Omega-\mathrm{B}}{L \Xi}=\frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i}=\sum_{i} \psi_{i} \quad \text { where }
$$

$\psi_{i}=\sigma(Z H) \cdot B R_{i}$
$\xi_{i}=$ efficiency for events from Higgs decay i to pass $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=\frac{\sum_{i} y_{i} \xi_{1}}{\sum_{i} y_{i}}$
$\psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \eta_{i}}$
$\omega_{i}=$ Number of signal + background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\beta_{i}=$ Predicted number of background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\eta_{i}=$ efficiency for Higgs decay i to pass $\sigma \cdot B R_{i}$ analysis
$K_{i}=$ number of signal + background events common to had Z recoil and $\sigma \cdot B R_{i}$ analyses
$\mathrm{E}=$ number of signal + background events unique to had Z recoil analysis
$\varepsilon_{i}=$ number of signal + background events events unique to $\sigma \bullet B R_{i}$ analysis

$$
\begin{array}{lll}
\Omega=\mathrm{E}+\sum_{i} \mathrm{~K}_{i} & \mathrm{~S} \equiv \Omega-\mathrm{B} & \mathrm{~T} \equiv \frac{\sqrt{\mathrm{~S}+\mathrm{B}}}{\mathrm{~S}} \\
\omega_{i}=\mathrm{K}_{i}+\varepsilon_{i} & s_{i} \equiv \omega_{i}-\beta_{i} & \tau_{i} \equiv \frac{\sqrt{\mathrm{~S}_{i}+\beta_{i}}}{\mathrm{~s}_{i}} \\
\lambda_{i} \equiv \frac{\mathrm{~K}_{i}}{\omega_{i}} & N \equiv L \sigma_{z H} & r_{i} \equiv B R_{i}
\end{array} \delta_{i} \equiv \xi_{i}-\Xi
$$

$$
\left(\frac{\Delta \Psi}{\Psi}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2}\left(\delta_{i}^{2}-2 \lambda_{i} \eta_{i} \delta_{i}\right)+\Delta \xi_{i}^{2}\right]\right\}
$$

This is our result for the error on $\sigma(Z H) \cdot B R($ visible) given the approach outlined on page 8
$\left(\frac{\Delta \Psi}{\Psi}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]\right\}$

Assume $\sqrt{s}=350 \mathrm{GeV}$ and $L=500 \mathrm{fb}^{-1}$
$\mathrm{N}=L \sigma_{Z H}=45383 \quad r_{i}=B R_{i}=\left(1-B R_{B S M}\right) B R_{i}(S M) \quad \tau_{i}(S M)=\frac{\Delta \sigma \bullet \mathrm{BR}_{i}(S M)}{\sigma \bullet \mathrm{BR}_{i}(S M)}=\frac{\sqrt{s_{i}+\beta_{i}}}{s_{i}}$

From Mark Thomson's presentation at the ILD Meeting Oshu City Sep 8, 2014:
$T=\frac{\sqrt{S+B}}{S}=0.014 \quad \Omega=S+B=17738$
$\xi_{i}(S M)$ are taken from the table on page 21 of Mark's presentation.

We assume that Mark's vis+invis efficiency values on page 21 cover all possible BSM decays since they cover all SM decays from completely invisible to fully hadronic multi-jet decays. Assuming no knowledge of the properties of the BSM decays we can then set
$\xi_{B S M}=0.5 *\left[\xi_{\text {vis+invis }}(\max)+\xi_{\text {vis }+i n v i s}(\min)\right]=0.5 *[0.258+0.188]=0.22$
$\Delta \xi_{B S M}=0.5 *\left[\xi_{\text {vis }+i n v i s}(\max)-\xi_{\text {vis }+i n v i s}(\min)\right]=.035$
$\left(\frac{\Delta \Psi}{\Psi}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]\right\}$

We next obtain the error $\tau_{B S M}=\frac{\Delta \sigma \bullet \mathrm{BR}_{B S M}}{\sigma \bullet \mathrm{BR}_{B S M}}$ from Michael Peskin's Higgs coupling fit program. We do not use the $\sum_{i} B R_{i}=1$ constraint, and to begin with we only use the leptonic recoil $\sigma_{Z H}$ measurement. This provides a model independent measurement of $g_{B S M}$. For $\sqrt{s}=350 \mathrm{GeV}, \mathrm{L}=500 \mathrm{fb}^{-1}$ Michael's program gives $\frac{\Delta \mathrm{g}_{B S M}}{\mathrm{~g}_{B S M}}=0.032$ which we multiply by two to get $\tau_{B S M}=\frac{\Delta \sigma \bullet \mathrm{BR}_{B S M}}{\sigma \bullet \mathrm{BR}_{B S M}}=0.064$. We assume
that $r_{B S M}($ true $)=0$ and therefore set the measured $r_{B S M}=\tau_{B S M}=0.064$. This gives a model independent $\frac{\Delta \Psi}{\Psi}=0.014 * 1.27=0.018$.

We then add this new model indepdendent hadronic recoil $\sigma_{Z H}$ measurement as input to Michael's program to obtain a new error $\tau_{B S M}=0.041$. Setting $r_{B S M}=\tau_{B S M}=0.041$ we then obtain a new model independent hadronic recoil $\sigma_{Z H}$ error of $\frac{\Delta \Psi}{\Psi}=0.014 * 1.12=0.016$.

Iterating again we arrive at $\mathrm{r}_{B S M}=\tau_{B S M}=0.039$ and $\frac{\Delta \Psi}{\Psi}=0.014 * 1.11=0.016$. Further interations don't give any improvement. Our best model independent hadronic recoil cross section error is $\Delta \sigma_{z H}=0.016$.
$\left(\frac{\Delta \Psi}{\Psi}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]\right\}$

We have shown that $\frac{1}{2} \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]=0.11$ for $\sqrt{s}=350 \mathrm{GeV}, \mathrm{L}=500 \mathrm{fb}^{-1}$.

How does this scale with luminosity?
$\frac{N^{2}}{\Omega} \propto L \quad \tau_{i}^{2} \propto L^{-1} \quad r_{i}^{2}$ is independent of lumi except $r_{B S M}^{2}=\tau_{B S M}^{2} \propto L^{-1}$. If we assume $\Delta \xi_{i}=0$ except $\Delta \xi_{\text {BSM }}=0.035$ then
$\frac{1}{2} \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]=0.11$ independent of the luminosity at $\sqrt{s}=350 \mathrm{GeV}$.

Caveats for hadronic recoil systematic error calculation :

These results assume that the true $r_{B S M}=B R(H \rightarrow B S M)=0$.
As the true $r_{\text {BSM }}$ grows we need to keep the product $r_{\text {BSM }} \Delta \xi_{B S M}$ constant to maintain the same systematic error. For example true $r_{\text {BSM }}$ required $\Delta \xi_{\text {BSM }}$
$.05 \quad 0.027$
$.10 \quad 0.014$
.150 .0091
. 20.0068
These $\Delta \xi_{B S M}$ requirements may seem stringent for the larger values of true $r_{B S M}$. However as $r_{B S M}$ grows we will have more $B S M$ decays to analyze and the required improvement in Monte Carlo modelling of the BSM decays should follow.

1st Five Years of ILC Running

Model Independent Higgs Couplings $\Delta g_{i} / g_{i}$

	Scenario B \sqrt{s}	Scenario D-500 250 GeV	
L L	$360 \mathrm{fb}^{-1}$	$470 \mathrm{fb}^{-1}$	

Further improvement in the Higgs coupling measurements can be obtained using the constraint $\sum_{i} B R_{i}=1$ as first noted by Michael Peskin.
This constraint is model independent so long as the error in $B R(H \rightarrow B S M)$ is included in the fit. What error in $B R(H \rightarrow B S M)$ is required to produce an improvement in Higgs coupling measurements ?

1st Five Years of ILC Running
Model Independent Higgs Couplings $\Delta g_{i} / g_{i}$

	Scenario D-500 350 GeV \sqrt{s}					
47 L						
$\sigma_{Z H}$ meas.	$l^{+} l^{-}+q \bar{q}$	$l^{+} l^{-}+q \bar{q}$.	$l^{+} l^{-}+q \bar{q}$	$l^{+} l^{-}+q \bar{q}$	$l^{+} l^{-}+q \bar{q}$	$l^{+} l^{-}+q \bar{q}$
$B R(H \rightarrow B S M)$	no meas.	$<7.2 \%$	$<3.6 \%$	$<1.8 \%$	$<0.9 \%$	$<0.09 \%$
$(95 \% \mathrm{CL})$						
$\gamma \gamma$	11.0%	10.9%	10.9%	10.9%	10.9%	10.9%
$g g$	3.1%	3.0%	2.9%	2.9%	2.9%	2.9%
$W W$	1.0%	0.94%	0.82%	0.71%	0.67%	0.65%
$Z Z$	0.72%	0.67%	0.60%	0.53%	0.51%	0.50%
$b \bar{b}$	2.0%	1.8%	1.6%	1.5%	1.4%	1.4%
$\tau^{+} \tau^{-}$	2.8%	2.7%	2.6%	2.5%	2.5%	2.4%
$c \bar{c}$	3.9%	3.8%	3.7%	3.7%	3.7%	3.7%
$\Gamma_{T}(h)$	4.9%	4.4%	3.6%	2.8%	2.5%	2.3%

215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992: Is this a starting point for a complete $\sigma \bullet \mathrm{BR}(H \rightarrow B S M)$ analysis?

Contents

1. Introduction and Overview 7
1.1. General Motivation to Search for Exotic Higgs Decays 8
1.2. Exotic Decay Modes of the 125 GeV Higgs Boson 13
1.3. Theoretical Models for Exotic Higgs Decays 19
1.3.1. $\mathrm{SM}+$ Scalar 19
1.3.2. 2HDM (+ Scalar) 23
1.3.3. $\mathrm{SM}+$ Fermion 35
1.3.4. $\mathrm{SM}+2$ Fermions 39
1.3.5. SM + Vector 41
1.3.6. MSSM 49
1.3.7. NMSSM with exotic Higgs decay to scalars 51
1.3.8. NMSSM with exotic Higgs decay to fermions 53
1.3.9. Little Higgs 56
1.3.10. Hidden Valleys 57
2. $\mathrm{h} \rightarrow \mathrm{E}_{\mathrm{T}}$ 62
2.1. Theoretical Motivation 62
2.2. Existing Collider Studies 63
2.3. Existing Experimental Searches and Limits 64
3. $\mathrm{h} \rightarrow 4 \mathrm{~b}$ 64
3.1. Theoretical Motivation 65
3.2. Existing Collider Studies 66
3.3. Existing Experimental Searches and Limits 67
3.4. Proposals for New Searches at the LHC 69
4. $\mathrm{h} \rightarrow 2 \mathrm{~b} 2 \tau$ 70
4.1. Theoretical Motivation 70
4.2. Existing Collider Studies 70
4.3. Discussion of Future Searches at the LHC 71
5. $\mathrm{h} \rightarrow 2 \mathrm{~b} 2 \mu$ 72
5.1. Theoretical Motivation 73
5.2. Existing Collider Studies and Experimental Searches 73
5.3. Proposals for New Searches at the LHC 74
6. $\mathrm{h} \rightarrow 4 \tau, 2 \tau 2 \mu$ 79
6.1. Theoretical Motivation 79
6.2. Existing Collider Studies 82
6.3. Existing Experimental Searches and Limits 84
6.4. Proposals for New Searches at the LHC 90
7. $\mathrm{h} \rightarrow 4 \mathrm{j}$ 93
7.1. Theoretical Motivation 94
7.2. Existing Collider Studies 95
7.3. Existing Experimental Searches and Limits 96
8. $h \rightarrow 2 \gamma 2 \mathrm{j}$ 97
8.1. Theoretical Motivation 97
8.2. Existing Collider Studies 98
8.3. Existing Experimental Searches and Limits 100
8.4. Proposals for Future Searches 100
9. $\mathrm{h} \rightarrow 4 \gamma$ 101
9.1. Theoretical Motivation 101
9.2. Existing Collider Studies 102
9.3. Existing Experimental Searches and Limits 105
9.4. Proposals for New Searches at the LHC 105
10. $\mathrm{h} \rightarrow \mathrm{ZZ}, \mathrm{Za} \rightarrow 4 \ell$ 106
10.1. Theoretical Motivation 106
10.1.1. $h \rightarrow Z Z_{D}$ 106
10.1.2. $h \rightarrow Z a$ 107
10.2. Existing Collider Studies 108
10.3. Existing Experimental Searches and Limits 108
10.4. Proposals for New Searches at the LHC 111
11. $\mathrm{h} \rightarrow \mathrm{Z}_{\mathrm{D}} \mathrm{Z}_{\mathrm{D}} \rightarrow 4 \ell$ 112
12. Theoretical Motivation 112
11.2. Existing Collider Studies 113
11.3. Existing Experimental Searches and Limits 113
13. $\mathrm{h} \rightarrow \boldsymbol{\gamma}+\mathrm{E}_{\mathrm{T}}$ 118
12.1. Theoretical Motivations 118
12.2. Existing Collider Studies 119
12.3. Existing Experimental Searches and Limits 120
14. $\mathrm{h} \rightarrow 2 \gamma+\mathrm{E}_{\mathrm{T}}$ 122
13.1. Theoretical Motivation 123
13.1.1. Non-Resonant 123
13.1.2. Resonant 124
13.1.3. Cascade 125
13.2. Existing Experimental Searches and Limits 125
15. $\mathrm{h} \rightarrow 4$ Isolated Leptons $+\mathrm{Fr}_{\mathrm{I}}$ 128
14.1. Theoretical Motivation 129
14.2. Existing Experimental Searches and Limits 130
16. $\mathrm{h} \rightarrow 2 \ell+\mathrm{E}_{\mathrm{T}}$ 136
15.1. Theoretical Motivation 136
15.2. Existing Experimental Searches and Limits 137
17. $\mathrm{h} \rightarrow$ One Lepton-jet +X 140
16.1. Theoretical Motivation 141
16.2. Existing Collider Studies 143
16.3. Existing Experimental Searches and Limits 144
16.4. Proposals for New Searches at the LHC 145
18. $\mathrm{h} \rightarrow$ Two Lepton-jets +X 145
17.1. Theoretical Motivation 145
17.2. Existing Collider Studies 147
19. Existing Experimental Searches and Limits 147
20. $\mathrm{h} \rightarrow \mathrm{b} \overline{\mathrm{b}}+\mathrm{E}_{\mathrm{T}}$ 149
18.1. Theoretical Motivation 150
18.2. Existing Collider Studies 151
18.3. Existing Experimental Searches and Limits 151
21. $\mathbf{h} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}+\mathbf{E}_{\mathrm{T}}$ 152
19.1. Theoretical Motivation 152
19.2. Existing Collider Studies 153
19.3. Existing Experimental Searches and Limits 154
22. Conclusions \& Outlook 154
20.1. How to interpret the tables 155
20.2. Final States Without F_{T} 156
20.2.1. $h \rightarrow a a \rightarrow$ fermions 156
20.2.2. $h \rightarrow a a \rightarrow$ SM gauge bosons 158
20.2.3. $h \rightarrow Z_{D} Z_{D}, Z Z_{D}, Z a$ 159
20.3. Final States with F_{T} 162
20.3.1. Larger \dot{B}_{T}, without resonances 164
20.3.2. Larger \dot{E}_{T}, with resonances 166
20.3.3. Small H_{T} 170
20.3.4. Summary 171
20.4. Collimated objects in pairs 171
20.5. For further study 174
20.6. Summary of Suggestions 175
A. Decay Rate Computation for $2 \mathrm{HDM}+\mathrm{S}$ Light Scalar and Pseudoscalar 179
A.1. Light Singlet Mass Above 1 GeV 180
A.2. Light Singlet Mass Below 1 GeV 183
B. Surveying Higgs phenomenology in the PQ-NMSSM 185
References 188

Summary

- The systematic error for the model dependence of Mark

Thomson's hadronic recoil Higgstrahlung cross section measurement has been shown to be 11\% of the statistical error assuming no knowledge of the properties of any BSM Higgs decays. This result is tailored for the context where $B R(H->B S M)$ is small.

- If $\mathrm{BR}(\mathrm{H}->\mathrm{BSM})$ is not small then analysis of BSM decays will improve the error on the efficiency for such events to pass the hadronic recoil analysis. It may be possile to maintain the 11% systematic error using the improved efficiency error. Of course we have a different Higgs physics program if $\mathrm{BR}(\mathrm{H}->\mathrm{BSM})$ is not small.
- A good understanding of $\sigma \cdot B R(H \rightarrow B S M)$ is required to squeeze the last little bit of model independent Higgs coupling precision out of the data.

Backup Slides

$$
\Psi \equiv \sigma(Z H) \cdot B R(\text { visible })
$$

$\Omega=$ Number of signal + background events in $\sigma(Z H) \cdot B R($ visible $)$ analysis
$\mathrm{B}=$ Predicted number of background events in $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=$ Average efficiency for signal events to pass $\sigma(Z H) \cdot B R($ visible) analysis
$L=$ luminosity
$\Psi=\frac{\Omega-\mathrm{B}}{L \Xi}=\frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i}=\sum_{i} \psi_{i} \quad$ where
$\psi_{i}=\sigma(Z H) \cdot B R_{i}$
$\xi_{i}=$ efficiency for events from Higgs decay i to pass $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=\frac{\sum_{i} \psi_{i} \xi_{i}}{\sum_{i} \psi_{i}}$
$\psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \eta_{i}}$
$\omega_{i}=$ Number of signal + background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\beta_{i}=$ Predicted number of background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\eta_{i}=$ efficiency for Higgs decay i to pass $\sigma \bullet B R_{i}$ analysis
$K_{i}=$ number of signal + background events common to had Z recoil and $\sigma \cdot B R_{i}$ analyses
$\mathrm{E}=$ number of signal + background events unique to had Z recoil analysis
$\varepsilon_{i}=$ number of signal + background events events unique to $\sigma \cdot B R_{i}$ analysis

$$
\begin{array}{lll}
\Omega=\mathrm{E}+\sum_{i} \mathrm{~K}_{i} & \mathrm{~S} \equiv \Omega-\mathrm{B} & \mathrm{~T} \equiv \frac{\sqrt{\mathrm{~S}+\mathrm{B}}}{\mathrm{~S}} \\
\omega_{i}=\mathrm{K}_{i}+\varepsilon_{i} & s_{i} \equiv \omega_{i}-\beta_{i} & \tau_{i} \equiv \frac{\sqrt{\mathrm{~s}_{i}+\beta_{i}}}{s_{i}} \\
\lambda_{i} \equiv \frac{\mathrm{~K}_{i}}{\omega_{i}} & N \equiv L \sigma_{z H} & r_{i} \equiv B R_{i}
\end{array} \delta_{i} \equiv \xi_{i}-\Xi
$$

$$
\begin{aligned}
& (\Delta \Psi)^{2}=\left(\frac{\partial \Psi}{\partial \Omega}\right)^{2} V_{\Omega \Omega}+\left(\frac{\partial \Psi}{\partial \Xi}\right)^{2} V_{\Xi \Xi}+2 \frac{\partial \Psi}{\partial \Omega} \frac{\partial \Psi}{\partial \Xi} V_{\Omega \Xi} \\
& \frac{\partial \Psi}{\partial \Omega}=\frac{1}{L \Xi}=\frac{\Psi}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \quad \frac{\partial \Psi}{\partial \Xi}=-\frac{\Omega-\mathrm{B}}{L \Xi^{2}}=-\frac{\Psi}{\Xi} \\
& V_{\Omega \Omega}=\mathrm{E}+\sum_{i} \mathrm{~K}_{i}=\Omega \\
& V_{\Xi \Xi}=\frac{1}{L^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(\varepsilon_{i}+\mathrm{K}_{i}\right) \\
& V_{\Omega \Xi}=\frac{1}{L \Psi} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \mathrm{~K}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{\Delta \Psi}{\Psi}\right)^{2} & =\frac{1}{\Omega^{2}}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2} V_{\Omega \Omega}+\frac{1}{\Xi^{2}} V_{\Xi \Xi}-\frac{2}{\Omega \Xi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} V_{\Omega \Xi} \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}+\frac{1}{L^{2} \Xi^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(\varepsilon_{i}+\mathrm{K}_{i}\right)-\frac{2}{L \Omega \Xi \Psi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \mathrm{~K}_{i} \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}+\frac{1}{L^{2} \Xi^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(L \eta_{i} \psi_{i}+\beta_{i}\right)-\frac{2}{L \Omega \Xi \Psi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \lambda_{i}\left(L \eta_{i} \psi_{i}+\beta_{i}\right) \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}\left[1+\frac{L}{\Omega} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\eta_{i}} \psi_{i}\left(1+\frac{\beta_{i}}{\mathrm{~S}_{i}}\right)-\frac{2 L}{\Omega} \sum_{i}\left(\xi_{i}-\Xi\right) \psi_{i} \lambda_{i}\left(1+\frac{\beta_{i}}{S_{i}}\right)\right] \\
& =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{L}{\Omega} \sum_{i}\left(\xi_{i}-\Xi\right) \psi_{i}\left(\frac{s_{i}+\beta_{i}}{s_{i}^{2}}\right)\left[\left(\xi_{i}-\Xi\right) L \psi_{i}-2 \lambda_{i} s_{i}\right]\right\} \\
& =\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \tau_{i}^{2}\left[\delta_{i}^{2}-2 \lambda_{i} \eta_{i} \delta_{i}\right]\right\}
\end{aligned}
$$

What if we don't do a hadronic Z recoil measurement and instead only use $\sigma(Z H) \cdot B R_{i}$ to calculate $\sigma(Z H) \cdot B R($ visible $)=\sum_{i} \sigma(Z H) \cdot B R_{i}$?

$$
\begin{aligned}
& \Psi^{\prime}=\sum_{i} \psi_{i} \quad \psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \xi_{i}} \\
& \left(\Delta \Psi^{\prime}\right)^{2}=\sum_{i}\left(\frac{\partial \Psi^{\prime}}{\partial \omega_{i}}\right)^{2} \omega_{i}, \quad \frac{\partial \Psi^{\prime}}{\partial \omega_{i}}=\frac{1}{L \eta_{i}^{\prime}} \\
& \left(\Delta \Psi^{\prime}\right)^{2}=\frac{1}{L^{2}} \sum_{i}=\frac{1}{L^{2}} \sum_{i} \frac{S_{i}+\beta_{i}}{\xi_{i}^{2}} \\
& \left(\frac{\Delta \Psi^{\prime}}{\Psi^{\prime}}\right)^{2}=\left(\sum_{i} \frac{\omega_{i}-\beta_{i}}{L \xi_{i}}\right)^{-2} \frac{1}{L^{2}} \sum_{i} \frac{S_{i}+\beta_{i}}{\xi_{i}^{2}} \\
& =\frac{S+\mathrm{B}}{S^{2}} \frac{L}{\Omega} \Xi^{2} \sum_{i} \frac{\psi_{i}}{\xi_{i}}\left(1+\frac{\beta_{i}}{S_{i}}\right)
\end{aligned}
$$

Compare this now with our formula for $\left(\frac{\Delta \Psi}{\Psi}\right)^{2}$ for $\lambda_{i}=1$:

$$
\begin{aligned}
\left(\frac{\Delta \Psi}{\Psi}\right)^{2} & =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{1}{\Omega} \sum_{i} \omega_{i}\left[\left(1-\frac{\Xi}{\xi_{i}}\right)^{2}-2\left(1-\frac{\Xi}{\xi_{i}}\right)\right]\right\} \\
& =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{1}{\Omega} \sum_{i} \omega_{i}\left[1-\frac{2 \Xi}{\xi_{i}}+\left(\frac{\Xi}{\xi_{i}}\right)^{2}-2+2 \frac{\Xi}{\xi_{i}}\right]\right\}=\left(\frac{\Delta \Psi^{\prime}}{\Psi^{\prime}}\right)^{2}
\end{aligned}
$$

