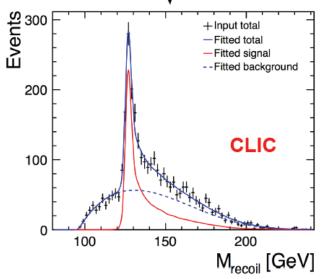
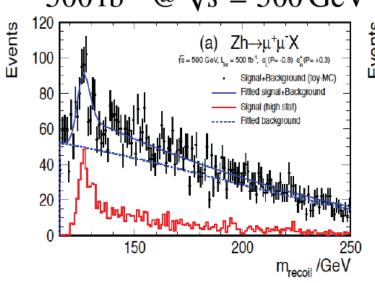

Using the Hadronic Recoil Cross Section Measurement in Higgs Coupling Fits

Tim Barklow (SLAC) Jan 12, 2015 ★ HZ is essential for unique Model Independent Higgs programme at the ILC

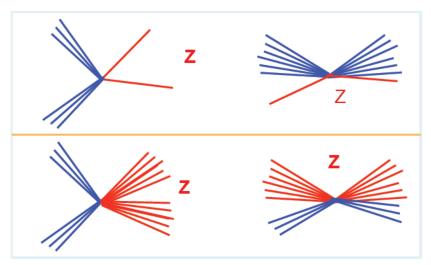
- ★ No need to run at peak of cross section
 - Event rate $\propto \sigma \times \mathcal{L}$
 - $\mathcal{L} \propto \gamma_{\rm e} \propto \sqrt{s}$
- ***** Can we make a M.I. measurement of s(HZ) at $\sqrt{s} > 250 \,\mathrm{GeV}$




Leptonic Recoil Mass

$$\frac{\Delta\sigma}{\sigma} = 4.7\%$$

$$\frac{\Delta\sigma}{\sigma} = 6.5\%$$


$$\label{eq:cf} \begin{array}{l} \text{cf} \quad \frac{\Delta\sigma}{\sigma} = 3.1\% \\ \text{for 250 fb}^{-1} \ @\sqrt{s} = 250 \text{ GeV}, \\ \mu^+\mu^- \text{ only} \end{array}$$

HZ Hadronic Recoil

- **★** Argument hinges on ability to exploit HZ production: Z → qq
 - Much larger branching ratio:
 - 60 % **Z** → qq
 - 3.5 % $Z \rightarrow \mu\mu$
- **★** But model independence is the issue...

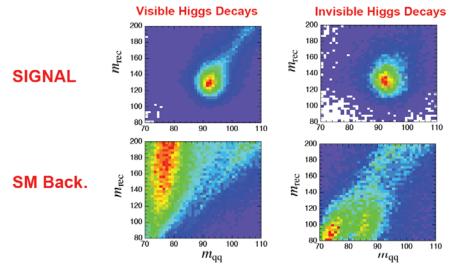
Muons "always" obvious

Here jet finding blurs separation between H and Z

Different efficiencies for different Higgs decays

Mark Thomson

Oshu City, September 2014



Mark Thomson

19

Oshu City, September 2014

★ Leptonic recoil at 250 GeV:

$$\frac{\Delta\sigma}{\sigma} = 2.6\%$$

ILC: 250 fb⁻¹

★ Hadronic recoil at 350 GeV:

$$\frac{\Delta\sigma}{\sigma} = 1.7\%$$

ILC: 350 fb-1

Mark Thomson Oshu City, September 2014 23

Mark Thomson's analysis of $\sigma(ZH)$ with $Z \to q\bar{q}$ uses two measurements to obtain the cross section:

$$\sigma(ZH) = \sigma(ZH) \cdot BR(visible) + \sigma(ZH) \cdot BR(invisible)$$

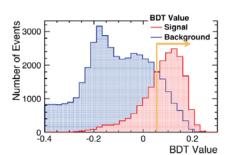
 $\sigma(ZH)$ •BR(visible)

 σ (ZH)•BR(invisible)

Model Independent?

20

BDT Selection



- **★** Combining visible + invisible analysis: wanted M.I.
 - i.e. efficiency independent of Higgs decay mode

Decay mode	$arepsilon_{\mathscr{L}>0.65}^{\mathrm{vis}}$	$arepsilon_{\mathscr{L}>0.60}^{\mathrm{vis}}$	$oldsymbol{arepsilon}^{ ext{vis}} + oldsymbol{arepsilon}^{ ext{invis}}$	_
$\begin{array}{l} H \rightarrow invis. \\ H \rightarrow q\overline{q}/gg \\ H \rightarrow WW^* \\ H \rightarrow ZZ^* \\ H \rightarrow \tau^+\tau^- \\ H \rightarrow \gamma\gamma \end{array}$	<0.1 % 22.2 % 21.6 % 20.2 % 24.7 % 25.8 %	22.0 % <0.1 % 0.1 % 1.0 % 0.3 % <0.1 %	22.0 % 22.2 % 21.7 % 21.2 % 24.9 % 25.8 %	- Very similal efficiencies
${ m H} ightarrow { m Z} \gamma$	18.5 %	0.3 %	18.8 %	J

ır

★ Preliminary results (7 variable BDT selection)

Channel		Efficiency			
$Z H \rightarrow qq$ invis.		20.7 %			
Backgrounds					
Channel	Effici	ency	Events		
qqlv	<0.	1 %	900		
qqll	<0.	1 %	4		
aavv	1.5	%	2414		

Signal

★ Assuming no invisible decays (1 sigma stat. error):

$$\Delta \sigma_{\rm invis} = \pm 0.57 \%$$

(CLIC beam spectrum, 500 fb⁻¹ @ 350 GeV, no polarisation)

Mark Thomson CERN, June 2014

In order to use this cross section measurement in our Higgs analyses we have to quantify the penalty associated with the fact that $\sigma(ZH) \cdot BR(visible)$ is "almost model independent". By how much must we blow up $\Delta \sigma(ZH) \cdot BR(visible)$ to account for the fact that the efficiencies differ by as much as 7%?

Model Independent?

- **★** Combining visible + invisible analysis: wanted M.I.
 - i.e. efficiency independent of Higgs decay mode

Decay mode	$arepsilon_{\mathscr{L}>0.65}^{\mathrm{vis}}$	$arepsilon_{\mathscr{L}>0.60}^{ ext{vis}}$	$arepsilon^{ ext{vis}} + arepsilon^{ ext{invis}}$		
$H \rightarrow invis.$	<0.1%	22.0%	22.0 %		
${ m H} ightarrow { m q} { m q}/{ m g}{ m g}$	22.2 %	<0.1 %	22.2 %		
$H \to WW^*$	21.6%	0.1%	21.7 %		V
$\mathrm{H} ightarrow \mathrm{ZZ}^*$	20.2%	1.0 %	21.2 %	<u> </u>	Very similar
${ m H} ightarrow au^+ au^-$	24.7 %	0.3 %	24.9 %		efficiencies
${ m H} ightarrow \gamma \gamma$	25.8%	<0.1 %	25.8 %		
$H \to Z \gamma$	18.5 %	0.3 %	18.8 %	١	
$\overline{H \to WW^* \to q\overline{q}q\overline{q}}$	21.3 %	<0.1 %	21.3 %		
$H o WW^* o q\overline{q} l \nu$	21.9%	<0.1 %	21.9 %		
$H ightarrow WW^* ightarrow q \overline{q} au u$	22.1 %	<0.1 %	22.1 %		Look at wide
$H o WW^* o lvlv$	24.8 %	0.1%	25.0 %		range of WW
$H \to WW^* \to l \nu \tau \nu$	20.5 %	0.8%	22.1 %		
$H o WW^* o au au au au$	16.4 %	2.5 %	18.9 %		topologies

We have used an approach where we use all of our $\sigma \cdot BR$ measurements for visible Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(ZH) \cdot BR(visible)$. It is then straightforward to propagate the $\sigma \cdot BR$ errors, as well as the systematic errors on the individual decay mode efficiencies for the $\sigma(ZH) \cdot BR(visible)$ selection, to the error on $\sigma(ZH) \cdot BR(visible)$.

Let

 $\Psi \equiv \sigma(ZH) \cdot BR(visible)$

 $\Omega = \text{Number of signal + background events in } \sigma(ZH) \cdot BR(visible) \text{ analysis}$

B = Predicted number of background events in $\sigma(ZH) \cdot BR(visible)$ analysis

 Ξ = Average efficiency for signal events to pass $\sigma(ZH) \cdot BR(visible)$ analysis

L = luminosity

$$\Psi = \frac{\Omega - B}{L\Xi} = \frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i} = \sum_{i} \psi_{i} \quad \text{where}$$

$$\psi_i = \sigma(ZH) \cdot BR_i$$

 $\xi_i = efficiency for events from Higgs decay i to pass <math>\sigma(ZH) \cdot BR(visible)$ analysis

$$\Xi = \frac{\sum_{i} \psi_{i} \xi_{i}}{\sum_{i} \psi_{i}}$$

$$\psi_i = \frac{\omega_i - \beta_i}{L \eta_i}$$

 ω_i = Number of signal + background events in $\sigma(ZH) \cdot BR_i$ analysis

 β_i = Predicted number of background events in $\sigma(ZH) \cdot BR_i$ analysis

 η_i = efficiency for Higgs decay i to pass $\sigma \cdot BR_i$ analysis

 K_i = number of signal + background events common to had Z recoil and $\sigma \cdot BR_i$ analyses

E = number of signal + background events unique to had Z recoil analysis ε_i = number of signal + background events events unique to $\sigma \cdot BR_i$ analysis

$$\Omega = E + \sum_{i} K_{i} \qquad S \equiv \Omega - B \qquad T \equiv \frac{\sqrt{S + B}}{S}$$

$$\omega_{i} = K_{i} + \varepsilon_{i} \qquad s_{i} \equiv \omega_{i} - \beta_{i} \qquad \tau_{i} \equiv \frac{\sqrt{s_{i} + \beta_{i}}}{s_{i}}$$

$$\lambda_{i} \equiv \frac{K_{i}}{\omega_{i}}$$
 $N \equiv L \sigma_{ZH}$ $r_{i} \equiv BR_{i}$ $\delta_{i} \equiv \xi_{i} - \Xi$

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = T^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \left[\tau_{i}^{2} \left(\delta_{i}^{2} - 2\lambda_{i} \eta_{i} \delta_{i} \right) + \Delta \xi_{i}^{2} \right] \right\}$$

This is our result for the error on $\sigma(ZH)$ •BR(visible) given the approach outlined on page 8

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = T^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \left[\tau_{i}^{2} \delta_{i}^{2} + \Delta \xi_{i}^{2} \right] \right\}$$

Assume $\sqrt{s} = 350$ GeV and L=500 fb⁻¹

$$N = L \sigma_{ZH} = 45383 \quad r_i = BR_i = (1 - BR_{BSM})BR_i(SM) \quad \tau_i(SM) = \frac{\Delta \sigma \bullet BR_i(SM)}{\sigma \bullet BR_i(SM)} = \frac{\sqrt{s_i + \beta_i}}{s_i}$$

From Mark Thomson's presentation at the ILD Meeting Oshu City Sep 8, 2014:

$$T = \frac{\sqrt{S + B}}{S} = 0.014$$
 $\Omega = S + B = 17738$

 $\xi_i(SM)$ are taken from the table on page 21 of Mark's presentation.

We assume that Mark's vis+invis efficiency values on page 21 cover all possible BSM decays since they cover all SM decays from completely invisible to fully hadronic multi-jet decays. Assuming no knowledge of the properties of the BSM decays we can then set

$$\xi_{BSM} = 0.5 * [\xi_{vis+invis}(max) + \xi_{vis+invis}(min)] = 0.5 * [0.258 + 0.188] = 0.22$$

 $\Delta \xi_{BSM} = 0.5 * [\xi_{vis+invis}(max) - \xi_{vis+invis}(min)] = .035$

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = T^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \left[\tau_{i}^{2} \delta_{i}^{2} + \Delta \xi_{i}^{2} \right] \right\}$$

We next obtain the error $\tau_{BSM} = \frac{\Delta \sigma \bullet BR_{BSM}}{\sigma \bullet BR_{BSM}}$ from Michael Peskin's Higgs coupling fit program. We do not use the $\sum_{i} BR_{i} = 1$ constraint, and to begin with we only use the leptonic recoil σ_{ZH} measurement. This provides a model independent measurement of g_{BSM} . For $\sqrt{s} = 350$ GeV, L=500 fb⁻¹ Michael's

program gives $\frac{\Delta g_{BSM}}{g_{BSM}} = 0.032$ which we multiply by two to get $\tau_{BSM} = \frac{\Delta \sigma \bullet BR_{BSM}}{\sigma \bullet BR_{BSM}} = 0.064$. We assume

that $r_{BSM}(true) = 0$ and therefore set the measured $r_{BSM} = \tau_{BSM} = 0.064$. This gives a model independent

$$\frac{\Delta\Psi}{\Psi}$$
 = 0.014 * 1.27 = 0.018.

We then add this new model indepdendent hadronic recoil $\sigma_{Z\!H}$ measurement as input to Michael's program to obtain a new error $\tau_{BSM}=0.041$. Setting $r_{BSM}=\tau_{BSM}=0.041$ we then obtain a new model independent hadronic recoil $\sigma_{Z\!H}$ error of $\frac{\Delta\Psi}{\Psi}=0.014*1.12=0.016$.

Iterating again we arrive at $r_{BSM} = \tau_{BSM} = 0.039$ and $\frac{\Delta \Psi}{\Psi} = 0.014 * 1.11 = 0.016$. Further interations don't give any improvement. Our best model independent hadronic recoil cross section error is $\Delta \sigma_{ZH} = 0.016$.

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = T^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \left[\tau_{i}^{2} \delta_{i}^{2} + \Delta \xi_{i}^{2} \right] \right\}$$

We have shown that $\frac{1}{2} \frac{N^2}{\Omega} \sum_{i} r_i^2 \left[\tau_i^2 \delta_i^2 + \Delta \xi_i^2 \right] = 0.11 \text{ for } \sqrt{s} = 350 \text{ GeV}, L=500 \text{ fb}^{-1}.$

How does this scale with luminosity?

$$\frac{N^2}{\Omega} \propto L$$
 $\tau_i^2 \propto L^{-1}$ r_i^2 is independent of lumi except $r_{BSM}^2 = \tau_{BSM}^2 \propto L^{-1}$.

If we assume $\Delta \xi_i = 0$ except $\Delta \xi_{BSM} = 0.035$ then

$$\frac{1}{2} \frac{N^2}{\Omega} \sum_{i} r_i^2 \left[\tau_i^2 \delta_i^2 + \Delta \xi_i^2 \right] = 0.11 \text{ independent of the luminosity at } \sqrt{s} = 350 \text{ GeV}.$$

Caveats for hadronic recoil systematic error calculation:

These results assume that the true $r_{BSM} = BR(H \to BSM) = 0$. As the true r_{BSM} grows we need to keep the product $r_{BSM}\Delta\xi_{BSM}$ constant to maintain the same systematic error. For example true r_{BSM} required $\Delta\xi_{BSM}$

BSM	=388
.05	0.027
.10	0.014
.15	0.0091
.20	0.0068

These $\Delta \xi_{BSM}$ requirements may seem stringent for the larger values of true r_{BSM} . However as r_{BSM} grows we will have more BSM decays to analyze and the required improvement in Monte Carlo modelling of the BSM decays should follow.

1st Five Years of ILC Running

Model Independent Higgs Couplings $\Delta g_i/g_i$

	Scenario B	Scenario D-500	
\sqrt{s}	250 GeV	350 GeV	
L	360 fb^{-1}	470	fb^{-1}
σ_{ZH} meas.	l^+l^- only	l^+l^- only	$l^+l^- + q\bar{q}$
γγ	14.9 %	11.0	11.0 %
gg	5.2 %	3.3	3.1 %
WW	4.0 %	1.7	1.0 %
ZZ	1.1 %	1.5	0.72 %
$bar{b}$	4.4 %	2.4	2.0 %
$ au^+ au^-$	4.7 %	3.0	2.8 %
$c\bar{c}$	5.6 %	4.1	3.9 %
$\Gamma_T(h)$	9.6 %	7.1	4.9 %

Further improvement in the Higgs coupling measurements can be obtained using the constraint $\sum_{i} BR_{i} = 1$ as first noted by Michael Peskin.

This constraint is model independent so long as the error in $BR(H \rightarrow BSM)$ is included in the fit. What error in $BR(H \rightarrow BSM)$ is required to produce an improvement in Higgs coupling measurements ?

1st Five Years of ILC Running

Model Independent Higgs Couplings $\Delta g_i/g_i$

\sqrt{s}	Scenario D-500 350 GeV					
V ³ L			470 f			
σ_{ZH} meas.	$l^+l^-+q\bar{q}$	$l^+l^-+q\bar{q}$.	$\frac{4701}{l^+l^- + q\bar{q}}$	$l^+l^-+q\bar{q}$	$l^+l^-+q\bar{q}$	$l^+l^- + q\bar{q}$
		<7.2%	<3.6%	<1.8%	<0.9%	<0.09%
$BR(H \to BSM)$	no meas.	<1.2%	<3.0%	<1.6%	<0.9%	<0.09%
(95% CL)						
$\gamma\gamma$	11.0 %	10.9 %	10.9 %	10.9 %	10.9 %	10.9 %
88	3.1 %	3.0 %	2.9 %	2.9 %	2.9 %	2.9 %
WW	1.0 %	0.94 %	0.82 %	0.71 %	0.67 %	0.65 %
ZZ	0.72 %	0.67 %	0.60 %	0.53 %	0.51 %	0.50 %
$bar{b}$	2.0 %	1.8 %	1.6 %	1.5 %	1.4 %	1.4 %
$ au^+ au^-$	2.8 %	2.7 %	2.6 %	2.5 %	2.5 %	2.4 %
$c\bar{c}$	3.9 %	3.8 %	3.7 %	3.7 %	3.7 %	3.7 %
$\Gamma_T(h)$	4.9 %	4.4 %	3.6 %	2.8 %	2.5 %	2.3 %

215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992 : Is this a starting point for a complete $\sigma \bullet BR(H \to BSM)$ analysis?

Contents

1. Introduction and Overview	7	5.1. Theoretical Motivation	73
1.1. General Motivation to Search for Exotic Higgs Decays	8	5.2. Existing Collider Studies and Experimental Searches	73
1.2. Exotic Decay Modes of the 125 GeV Higgs Boson	13	5.3. Proposals for New Searches at the LHC	74
1.3. Theoretical Models for Exotic Higgs Decays	19	6. h $ ightarrow 4 au$, $2 au 2\mu$	79
1.3.1. SM + Scalar	19	6.1. Theoretical Motivation	79
1.3.2. 2HDM (+ Scalar)	23	6.2. Existing Collider Studies	82
1.3.3. SM + Fermion	35	6.3. Existing Experimental Searches and Limits	84
1.3.4. SM + 2 Fermions	39	6.4. Proposals for New Searches at the LHC	90
1.3.5. SM + Vector	41		
1.3.6. MSSM	49	7. $\mathbf{h} ightarrow 4\mathbf{j}$	93
1.3.7. NMSSM with exotic Higgs decay to scalars	51	7.1. Theoretical Motivation	94
1.3.8. NMSSM with exotic Higgs decay to fermions	53	7.2. Existing Collider Studies	95
1.3.9. Little Higgs	56	7.3. Existing Experimental Searches and Limits	96
1.3.10. Hidden Valleys	57	8. h $ ightarrow 2 \gamma 2 { m j}$	97
$2. h \to E_T$	62	8.1. Theoretical Motivation	97
2.1. Theoretical Motivation	62	8.2. Existing Collider Studies	98
2.2. Existing Collider Studies	63	8.3. Existing Experimental Searches and Limits	100
2.3. Existing Counter Studies 2.3. Existing Experimental Searches and Limits	64	8.4. Proposals for Future Searches	100
2.3. Existing Experimental Searches and Limits	04	9. h $ ightarrow 4\gamma$	101
$3.~h \rightarrow 4b$	64	9.1. Theoretical Motivation	101
3.1. Theoretical Motivation	65	9.2. Existing Collider Studies	101
3.2. Existing Collider Studies	66	9.3. Existing Experimental Searches and Limits	102
3.3. Existing Experimental Searches and Limits	67	9.4. Proposals for New Searches at the LHC	105
3.4. Proposals for New Searches at the LHC	69	3.4. I toposais for few scarcines at the fifte	100
		10. h $ ightarrow$ ZZ _D , Za $ ightarrow$ 4 $m{\ell}$	106
4. $h \rightarrow 2b2\tau$	70	10.1. Theoretical Motivation	106
4.1. Theoretical Motivation	70	10.1.1. $h \to ZZ_D$	106
4.2. Existing Collider Studies	70	$10.1.2.\ h o Za$	107
4.3. Discussion of Future Searches at the LHC	71	10.2. Existing Collider Studies	108
5. h $ ightarrow 2$ b 2μ	72	10.3. Existing Experimental Searches and Limits	108
	12	10.4. Proposals for New Searches at the LHC	111

more Table of Contents from 215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992:

11. $h o Z_D Z_D o 4\ell$	112	17.3. Existing Experimental Searches and Limits	14
11.1. Theoretical Motivation	112	18. h $ ightarrow$ b $ar{ m b}$ + $ar{ m E}_{ m T}$	149
11.2. Existing Collider Studies	113	18.1. Theoretical Motivation	150
11.3. Existing Experimental Searches and Limits	113	18.2. Existing Collider Studies	151
12. h $ ightarrow\gamma+\mathbb{E}_{\Gamma}$	118	18.3. Existing Experimental Searches and Limits	151
12.1. Theoretical Motivations	118		
12.2. Existing Collider Studies	119	19. $\mathbf{h} ightarrow oldsymbol{ au}^+ oldsymbol{ au}^- + ot\! E_{\mathbf{T}}$	152
12.3. Existing Experimental Searches and Limits	120	19.1. Theoretical Motivation	152
12.0. Entering Emperimental Sections and Emilia		19.2. Existing Collider Studies	153
13. h $ ightarrow 2\gamma + ot \!$	122	19.3. Existing Experimental Searches and Limits	154
13.1. Theoretical Motivation	123		
13.1.1. Non-Resonant	123	20. Conclusions & Outlook	154
13.1.2. Resonant	124	20.1. How to interpret the tables	153
13.1.3. Cascade	125	20.2. Final States Without E_T	156
13.2. Existing Experimental Searches and Limits	125	$20.2.1. h \rightarrow aa \rightarrow \text{fermions}$	156
		20.2.2. $h \to aa \to \mathrm{SM}$ gauge bosons	158
14. h $ ightarrow$ 4 Isolated Leptons + E_{Γ}	128	$20.2.3. h \rightarrow Z_D Z_D, Z Z_D, Z a$	159
14.1. Theoretical Motivation	129	20.3. Final States with ₽ _T	162
14.2. Existing Experimental Searches and Limits	130	20.3.1. Larger $\not\!\!E_T$, without resonances	164
15. h $ ightarrow 2m{\ell} + E_{\Gamma}$	136	20.3.2. Larger $\not \!\!\!E_T$, with resonances	166
15.1. Theoretical Motivation	136	20.3.3. Small E_T	170
15.2. Existing Experimental Searches and Limits	137	20.3.4. Summary	171
		20.4. Collimated objects in pairs	171
16. h \rightarrow One Lepton-jet + X	140	20.5. For further study	174
16.1. Theoretical Motivation	141	20.6. Summary of Suggestions	178
16.2. Existing Collider Studies	143		
16.3. Existing Experimental Searches and Limits	144	A. Decay Rate Computation for 2HDM+S Light Scalar and Pseudoscalar	179
16.4. Proposals for New Searches at the LHC	145	A.1. Light Singlet Mass Above 1 GeV	180
17. h \rightarrow Two Lepton-jets + X	145	A.2. Light Singlet Mass Below 1 GeV	183
17.1. Theoretical Motivation	145	B. Surveying Higgs phenomenology in the PQ-NMSSM	18
17.1. Theoretical Modification 17.2. Existing Collider Studies	147	2. Sarreying ringgs phenomenology in the r w-rampoint	100
17.2. Existing Collider Studies	141	References	188

Summary

- The systematic error for the model dependence of Mark
 Thomson's hadronic recoil Higgstrahlung cross section
 measurement has been shown to be 11% of the statistical
 error assuming no knowledge of the properties of any BSM
 Higgs decays. This result is tailored for the context where
 BR(H->BSM) is small.
- If BR(H->BSM) is not small then analysis of BSM decays will improve the error on the efficiency for such events to pass the hadronic recoil analysis. It may be possile to maintain the 11 % systematic error using the improved efficiency error. Of course we have a different Higgs physics program if BR(H->BSM) is not small.

 A good understanding of σ• BR(H→ BSM) is required to squeeze the last little bit of model independent Higgs coupling precision out of the data.

Backup Slides

Let

 $\Psi \equiv \sigma(ZH) \cdot BR(visible)$

 Ω = Number of signal + background events in $\sigma(ZH) \cdot BR(visible)$ analysis

B = Predicted number of background events in $\sigma(ZH) \cdot BR(visible)$ analysis

 Ξ = Average efficiency for signal events to pass $\sigma(ZH) \cdot BR(visible)$ analysis

L = luminosity

$$\Psi = \frac{\Omega - B}{L\Xi} = \frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i} = \sum_{i} \psi_{i} \quad \text{where}$$

$$\psi_i = \sigma(ZH) \cdot BR_i$$

 $\xi_i = e$ fficiency for events from Higgs decay i to pass $\sigma(ZH) \cdot BR(visible)$ analysis

$$\Xi = \frac{\sum_{i} \psi_{i} \xi_{i}}{\sum_{i} \psi_{i}}$$

$$\psi_i = \frac{\omega_i - \beta_i}{L \, \eta_i}$$

 ω_i = Number of signal + background events in $\sigma(ZH) \cdot BR_i$ analysis

 β_i = Predicted number of background events in $\sigma(ZH) \cdot BR_i$ analysis

 η_i = efficiency for Higgs decay i to pass $\sigma \cdot BR_i$ analysis

 K_i = number of signal + background events common to had Z recoil and $\sigma \cdot BR_i$ analyses

E = number of signal + background events unique to had Z recoil analysis ε_i = number of signal + background events events unique to $\sigma \cdot BR_i$ analysis

$$\Omega = E + \sum_{i} K_{i} \qquad S \equiv \Omega - B \qquad T \equiv \frac{\sqrt{S + B}}{S}$$

$$\omega_{i} = K_{i} + \varepsilon_{i} \qquad s_{i} \equiv \omega_{i} - \beta_{i} \qquad \tau_{i} \equiv \frac{\sqrt{s_{i} + \beta_{i}}}{s_{i}}$$

$$\lambda_{i} \equiv \frac{K_{i}}{\omega_{i}}$$
 $N \equiv L \sigma_{ZH}$ $r_{i} \equiv BR_{i}$ $\delta_{i} \equiv \xi_{i} - \Xi$

$$(\Delta \Psi)^{2} = \left(\frac{\partial \Psi}{\partial \Omega}\right)^{2} V_{\Omega\Omega} + \left(\frac{\partial \Psi}{\partial \Xi}\right)^{2} V_{\Xi\Xi} + 2\frac{\partial \Psi}{\partial \Omega}\frac{\partial \Psi}{\partial \Xi}V_{\Omega\Xi}$$
$$\frac{\partial \Psi}{\partial \Omega} = \frac{1}{L\Xi} = \frac{\Psi}{\Omega}\left(1 - \frac{B}{\Omega}\right)^{-1} \qquad \qquad \frac{\partial \Psi}{\partial \Xi} = -\frac{\Omega - B}{L\Xi^{2}} = -\frac{\Psi}{\Xi}$$

$$V_{\Omega\Omega} = E + \sum_{i} K_{i} = \Omega$$

$$V_{\Xi\Xi} = \frac{1}{L^{2} \Psi^{2}} \sum_{i} \frac{(\xi_{i} - \Xi)^{2}}{(\eta_{i})^{2}} (\varepsilon_{i} + K_{i})$$

$$V_{\Omega\Xi} = \frac{1}{L \Psi} \sum_{i} \frac{\xi_{i} - \Xi}{\eta_{i}} K_{i}$$

$$\begin{split} \left(\frac{\Delta\Psi}{\Psi}\right)^2 &= \frac{1}{\Omega^2} \left(1 - \frac{B}{\Omega}\right)^{-2} V_{\alpha\alpha} + \frac{1}{\Xi^2} V_{\Xi\Xi} - \frac{2}{\Omega\Xi} \left(1 - \frac{B}{\Omega}\right)^{-1} V_{\alpha\Xi} \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} + \frac{1}{L^2\Xi^2\Psi^2} \sum_i \frac{(\xi_i - \Xi)^2}{(\eta_i)^2} (\varepsilon_i + K_i) - \frac{2}{L\Omega\Xi\Psi} \left(1 - \frac{B}{\Omega}\right)^{-1} \sum_i \frac{\xi_i - \Xi}{\eta_i} K_i \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} + \frac{1}{L^2\Xi^2\Psi^2} \sum_i \frac{(\xi_i - \Xi)^2}{(\eta_i)^2} (L\eta_i\psi_i + \beta_i) - \frac{2}{L\Omega\Xi\Psi} \left(1 - \frac{B}{\Omega}\right)^{-1} \sum_i \frac{\xi_i - \Xi}{\eta_i} \lambda_i (L\eta_i\psi_i + \beta_i) \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} \left[1 + \frac{L}{\Omega} \sum_i \frac{(\xi_i - \Xi)^2}{\eta_i} \psi_i \left(1 + \frac{\beta_i}{s_i}\right) - \frac{2L}{\Omega} \sum_i (\xi_i - \Xi)\psi_i \lambda_i \left(1 + \frac{\beta_i}{s_i}\right)\right] \\ &= \frac{S + B}{S^2} \left\{1 + \frac{L}{\Omega} \sum_i (\xi_i - \Xi)\psi_i \left(\frac{s_i + \beta_i}{s_i^2}\right) \left[(\xi_i - \Xi)L\psi_i - 2\lambda_i s_i\right]\right\} \\ &= T^2 \left\{1 + \frac{N^2}{\Omega} \sum_i r_i^2 \tau_i^2 \left[\delta_i^2 - 2\lambda_i \eta_i \delta_i\right]\right\} \end{split}$$

What if we don't do a hadronic Z recoil measurement and instead only use $\sigma(ZH) \cdot BR_i$ to calculate $\sigma(ZH) \cdot BR(visible) = \sum_i \sigma(ZH) \cdot BR_i$?

$$\Psi' = \sum_{i} \psi_{i} \qquad \psi_{i} = \frac{\omega_{i} - \beta_{i}}{L \xi_{i}}$$

$$(\Delta \Psi')^{2} = \sum_{i} \left(\frac{\partial \Psi'}{\partial \omega_{i}}\right)^{2} \omega_{i} , \qquad \frac{\partial \Psi'}{\partial \omega_{i}} = \frac{1}{L \eta'_{i}}$$

$$(\Delta \Psi')^{2} = \frac{1}{L^{2}} \sum_{i} = \frac{1}{L^{2}} \sum_{i} \frac{s_{i} + \beta_{i}}{\xi_{i}^{2}}$$

$$\left(\frac{\Delta \Psi'}{\Psi'}\right)^{2} = \left(\sum_{i} \frac{\omega_{i} - \beta_{i}}{L \xi_{i}}\right)^{-2} \frac{1}{L^{2}} \sum_{i} \frac{s_{i} + \beta_{i}}{\xi_{i}^{2}}$$
$$= \frac{S + B}{S^{2}} \frac{L}{\Omega} \Xi^{2} \sum_{i} \frac{\psi_{i}}{\xi_{i}} \left(1 + \frac{\beta_{i}}{s_{i}}\right)$$

Compare this now with our formula for $\left(\frac{\Delta \Psi}{\Psi}\right)^2$ for $\lambda_i = 1$:

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = \frac{S+B}{S^{2}} \left\{ 1 + \frac{1}{\Omega} \sum_{i} \omega_{i} \left[\left(1 - \frac{\Xi}{\xi_{i}}\right)^{2} - 2\left(1 - \frac{\Xi}{\xi_{i}}\right) \right] \right\}$$

$$= \frac{S+B}{S^{2}} \left\{ 1 + \frac{1}{\Omega} \sum_{i} \omega_{i} \left[1 - \frac{2\Xi}{\xi_{i}} + \left(\frac{\Xi}{\xi_{i}}\right)^{2} - 2 + 2\frac{\Xi}{\xi_{i}} \right] \right\} = \left(\frac{\Delta\Psi'}{\Psi'}\right)^{2}$$

