NMSSM Higgs Decay $h \rightarrow 2a_1$ at SiD Recasting the Snowmass Study

Chris Potter

University of Oregon

SiD, January 2015 – p.1/23

Introduction

- We know that the Standard Model (SM) is not complete. Supersymmetry is an exciting extension which has a much richer Higgs sector. In this talk I discuss the Next-to-Minimal Supersymmetric Model (NMSSM)
 - While h_{125} decay channel signal strengths from CMS and ATLAS are consistent with the Standard Model prediction, they are also consistent with a large branching ratio to invisible/unobserved final states.
 - One possibly unobserved channel is $h_{125} \rightarrow 2a_1$, where a_1 is the lightest CP-odd Higgs boson which might escape detection in the dominant decay $a_1 \rightarrow \tau^+ \tau^-$.
- Another interesting possibility is that the there is a lighter CP-even Higgs h_1 which has so far escaped detection but may account for the LEPII 2.3 σ excess in the $Zb\bar{b}$ channel.
- This scenario has been studied at ALEPH, BaBar, CDF, DZero, ATLAS and CMS. The most constraining limits are from ALEPH in 1003.0705.
- Full details of the original SiD study can be found in the Snowmass White paper SNOW13-00133 (1309.0021).
- In this talk I also discuss recasting the results of the original study into regions of NMSSM parameter space which are still viable after all constraints, including h_{125} , are applied.

Next-to-Minimal Supersymmetric Model

One singlet superfield S is introduced to the MSSM. An effective μ term is generated $\mu_{eff} = \lambda \langle S \rangle$ at a natural scale.

The NMSSM superpotential is given by:

$$\mathbf{W} = \lambda \mathbf{S} \mathbf{H}_{\mathbf{u}} \mathbf{H}_{\mathbf{d}} + \frac{\kappa}{3} \mathbf{S}^3$$

The soft SUSY breaking terms in the NMSSM Lagrangian are

$$V_{soft} = m_{H_d}^2 |H_d|^2 + m_{H_u}^2 |H_u|^2 + m_S^2 |S|^2 + (-\lambda A_\lambda H_u H_d S + \frac{1}{3} A_\kappa \kappa S^3 + h.c.).$$

Six parameters determine the NMSSM Higgs sector at tree level:

 $\lambda,\kappa,A_\lambda,A_\kappa, aneta$ and μ_{eff}

The NMSSM Higgs sector has 2 neutral CP-odd, 3 neutral CP-even and 2 charged scalars:

 $a_1, a_2, h_1, h_2, h_3, H^+, H^-$

SiD, January 2015 – p.3/23

NMSSM Higgs Mass Spectrum (i)

Define a parameter $m_A^2 = \frac{\lambda v_s}{\sin 2\beta} \left(\sqrt{2}A_\lambda + \kappa v_s \right)$ where $v_s = \sqrt{2} \langle S \rangle$. The NMSSM charged Higgs mass at tree level is given by (v = 246 GeV):

Nucl.Phys.B681:3-30,2004

$$m_{H_{\pm}}^2 = m_A^2 + m_W^2 - \frac{1}{2} \left(\lambda v^2 \right)$$

Consider the large $\tan \beta$, large $m_A \gg m_Z$ limit ($\tan \beta_s \equiv v_s/v$):

Nucl.Phys.B681:3-30,2004

$$\begin{split} m_{a_1}^2 &\approx -\frac{3}{\sqrt{2}}\kappa v_s A_\kappa \\ m_{h_{1,2}}^2 &\approx \frac{1}{2} \left[m_Z^2 + \frac{1}{2}\kappa v_s (4\kappa v_s + \sqrt{2}A_\kappa) \pm f(\kappa, v_s, A_\kappa, \lambda, m_A, \sin\beta) \right] \\ m_{a_2}^2 &\approx m_A^2 \left(1 + \frac{1}{4}\cot^2\beta_s \sin^2 2\beta \right) \\ m_{h_3}^2 &\approx m_A^2 \left(1 + \frac{1}{4}\cot^2\beta_s \sin^2 2\beta \right) \end{split}$$

Note that in the $m_A \gg m_Z$ decoupling limit, the lighter Higgses m_{a_1,h_1,h_2} are decoupled from the heavier Higgses $m_{a_2,h_3,H^{\pm}} \approx m_A$.

SiD, January 2015 – p.4/23

NMSSM Higgs Mass Spectrum (ii)

Low mass scalars a_1 and h_1 absent in the MSSM but present in the NMSSM are motivated by the anomalous muon magnetic moment and the LEP excess in the $Zh \rightarrow Zb\bar{b}$ channel.

SiD, January 2015 – p.5/23

NMSSM Ideal Higgs at Aleph, BaBar, DZero, CDF

SiD, January 2015 – p.6/23

NMSSM Ideal $gg \rightarrow a_1 \rightarrow \mu^+\mu^-$ at CMS,ATLAS

At left, muon pair mass. At right, limits on $\sigma \times BR$ obtained with CLs technique.

SiD, January 2015 – p.7/23

The h_{125} Mass and Signal Strengths

SiD, January 2015 – p.8/23

Snowmass Study: NMSSM Higgs BP0 (Excluded)

NMSSMTools 3.2.4

Target: $2m_{ au} < m_{a_1} < 2m_B$, $90 < m_{h_1} < 100$ GeV, $m_{h_2} \approx 125$ GeV

Parameter	Value	Scalar	Mass [GeV]	Decay	Br [%]
λ	0.3	a_1	10.3	$h_1 \rightarrow 2a_1$	85.4
κ	0.1	h_1	91.6	$h_2 \rightarrow 2a_1$	87.4
A_{κ}	11.6	h_2	124.5	$a_1 \to \tau^+ \tau^-$	73.2
m_A	465 GeV	a_2	465.2	$a_1 \rightarrow 2g$	22.3
aneta	3.1	h_3	469.2	$a_1 o c \bar{c}$	3.1
μ_{eff}	165 GeV	H^{\pm}	465.7	$a_1 \to \mu^+ \mu^-$	0.3

The generated particle spectrum and decay tables are saved in SLHA files and passed to Whizard. See SNOW13-00133 (1309.0021) for full details. *This point has been excluded by the* h_{125} *signal strength constraints. Other points with similar phenomenology survive.*

Signal/Background Simulation

- Simulation of the signal process $e^+e^- \rightarrow Zh_{1,2} \rightarrow f\bar{f}a_1a_1$ was performed with the Whizard event generator, which has a full implementation of the NMSSM.
- Whizard interfaces the NMSSM model with the SLHA file generated by NMSSMTools.
- Signal events are weighted by $Zh_{1,2}$ production cross section multiplied by the branching ratio for $Z \to f\bar{f}$.
- Background is $e^+e^- \rightarrow ZZ \rightarrow Z\tau_{-pr}\tau_{3-pr}$, a dedicated high statistics sample generated.

Thanks to Tim Barklow for generating the Whizard events and Norman Graf for SiD detector simulation and event reconstruction.

The $h_{1,2} \rightarrow 2a_1 \rightarrow 4\tau$ Channel

The $h_{1,2} \rightarrow 2a_1 \rightarrow 4\tau$ Selection Requirements

Require at least two muons with $p_T > 5 \text{ GeV} (N_{\mu 5} \ge 2)$ Require the muon pair closest to the *Z* mass within 3σ of the nominal *Z* mass $(|m_Z - m_{\mu^+\mu^-}| < 3\sigma)$ Require exactly six tracks with $p_T > 0.2 \text{ GeV} (N_{trk} = 6)$ Require zero net charge in the recoil tracks $(Q_{4trk} = 0)$ Veto $\tau \rightarrow a_1(1260)\nu$ by requiring candidate $a_1(1260)$ mass $m_{3trk} > 2 \text{ GeV}$ Case I: require $123 < m_{recoil} < 160 \text{ GeV}$; Case II: or require $80 < m_{recoil} < 123 \text{ GeV}$; Case III: or require none.

Yields assume $\sqrt{s} = 250$ GeV, 250fb⁻¹ luminosity, and 80% e_L^- , 30% e_R^+ beam polarization:

	Case I	Case II	Case III
Signal	121	182	302
Background	0.4	1.3	1.7

$h_{1,2}$ Recoil Masses after Full Selection

The fits yield $m_{h_1} = 90.8 \pm 0.2$ GeV and $m_{h_2} = 124.7 \pm 0.2$ GeV.

SiD, January 2015 – p.12/23

The $h_{1,2} \rightarrow 2a_1 \rightarrow 2\mu 2\tau$ Channel

The $h_{1,2} \rightarrow 2a_1 \rightarrow 2\mu 2\tau$ Selection Requirements

- require at least two muons with $p_T > 5$ GeV ($N_{\mu 5} \ge 2$)
- require exactly six or eight tracks with $p_T > 0.2$ GeV ($N_{trk} = 6, 8$)
- require zero net charge in the tracks ($Q_{trks} = 0$)

require the muon pair mass closest to the a_1 mass within 3σ of the fitted a_1 mass $(|m_{a_1} - m_{\mu^+\mu^-}| < 3\sigma)$

The expected SM background is 0.7 events and the expected signal yield is 23 events for Case III.

After luminosity upgrades (1150 fb⁻¹), the expected number of signal events is 106 for Case III.

Here we seek to identify $a_1 \rightarrow \mu^+ \mu^-$ events without requiring the $Z \rightarrow \mu^+ \mu^-$ decay channel, greatly enlarging the signal yield. On the *Z* side we require no-track or two-track decays $Z \rightarrow \nu \bar{\nu}, e^+ e^-, \mu^+ \mu^+, \tau_{1-pr}, \tau_{1-pr}$ and on the $h_{1,2}$ side require one $a_1 \rightarrow \mu^+ \mu^-$ and one $a_1 \rightarrow \tau^+ \tau^-$ where the taus decays as either 1- or 3-prongs.

Reconstructed $a_1 \rightarrow \mu^+ \mu^-$ After Full Selection

The fit yields $m_{a_1} = 10.329 \pm 0.005$ GeV.

SiD, January 2015 - p.14/23

SM-like h_{125} Recipe for Parameter Scan

How can SUSY accommodate the high Higgs mass and the SM-like Higgs couplings? Correction to the tree level MSSM *h* mass from stop mixing $(m_{\tilde{t}}^2 \equiv \frac{1}{2} \left(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 \right))$: arXiv:1110.6926

$$\delta m_h^2 = \frac{3G_F}{\sqrt{2}\pi^2} m_t^4 \left(\log\left(\frac{m_{\tilde{t}}^2}{m_t^2}\right) + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2}\right) \right)$$

Here $X_t \equiv A_t - \mu / \tan \beta$ is the *stop mixing parameter*. Maximal mixing, and therefore the maximum contribution to the Higgs mass, occurs for $X_t = X_t^{max} = \sqrt{6}m_{\tilde{t}}$.

In principle the NMSSM Higgses from the singlet can mix with the MSSM Higgs sector, but for simplicity consider the MSSM completely decoupled from the singlet.

In the MSSM decoupling limit $m_Z/m_A \propto \cos(\beta - \alpha) \rightarrow 0$, the MSSM *h* couplings approach their Standard Model values. Denote $x \equiv \sin(\beta - \alpha)$. Then this limit is $x \rightarrow 1$:

Prog.Part.Nucl.Phys.50:63-152,2003

$$g_{hVV} = x \times g_{hVV}^{SM}$$
$$g_{hff} = g_{hff}^{SM} \times \left(x - \sqrt{1 - x^2} \tan^n \beta\right)$$

Easy. Allow large stop mixing and put m_A in the decoupling limit.

SiD, January 2015 – p.15/23

NMSSMTools4.4.0 Random Scan of 10⁹ Points

Scan Parameter Ranges

- $300 < m_A < 3000 \text{ GeV}$ and $9.9 < m_P < 10.5 \text{ GeV}$
- 1 < aneta < 30 and $100 < \mu < 200$ GeV
- $0 < |\kappa| < 0.01$ and $0 < \lambda < 0.02$
- $0.8 < X_t/X_0^{max} < 1.8$, X_0^{max} is tree-level max. mix.
- $250 < M_{Q3}, M_{U3} < 1500 \text{ GeV}, A_t = X_t + \mu/\tan\beta$
 - $100 < M_2 < 400$ GeV, unif. constraints M_1, M_3
- Constraints Imposed During Scan (10.9M points survive)
 - DM Relic Density Ω_{DM} , (+In)direct DM searches Anomalous Muon Magnetic Moment Δa_{μ}
 - All Collider and *B* Physics Constraints
 - $123 < m_{h_1} < 127 \text{ GeV or } 123 < m_{h_2} < 127 \text{ GeV}$
 - Higgs signal strength $\mu \chi^2_{ZZWW}, \chi^2_{bb\tau\tau}, \chi^2_{\gamma\gamma} < 6$
- Constraints Imposed After Scan (13K points survive)
 - $124.73 < m_{h_2} < 125.33 \text{ GeV} (\text{CMS-PAS-HIG-14-009})$
 - Signal strength $\chi^2_{ZZWW} + \chi^2_{bb\tau\tau} + \chi^2_{\gamma\gamma} < 7$

SiD, January 2015 – p.16/23

Constraints: Δa_{μ} , Ω_{DM} , h_{125}

Clockwise from top left, Δa_{μ} vs Ω_{DM} , $\sum \chi_{ff}^2$ vs $\sum \chi_{VV}^2$, m_{h_2} vs $\sum \chi^2$, m_{h_2} vs m_{a_1} .

SiD, January 2015 – p.17/23

Scanned Parameters After Constraints

Clockwise from top left, λ vs κ , μ vs tan β , μ vs M_2 , X_t/X_0^{max} vs M_{Q3} .

SiD, January 2015 - p.18/23

Mass Spectra After Constraints

Clockwise from top left, m_{h_1} vs m_A , m_{χ_1} vs m_{χ_2} , m_{χ_3} vs m_{χ_4} , m_{χ_1} vs m_{χ_5} .

SiD, January 2015 – p.19/23

Two Viable Points with $m_{h_1} \approx 60, 100$ GeV (BP1,BP2)

NMSSMTools4.4.0

BP1 Target: $9.9 < m_{a_1} < 10.5$ GeV, $m_{h_1} \approx 60$ GeV, $m_{h_2} \approx 125$ GeV

Parameter	Value	Scalar	Mass [GeV]	Decay	Br [%]
λ	0.0018	a_1	10.1	$h_1 \rightarrow 2a_1$	0.987
κ	0.00036	h_1	59.3	$h_2 \rightarrow 2a_1$	6.0×10^{-5}
m_P	10.3 GeV	h_2	121.7	$a_1 \to \tau^+ \tau^-$	0.790
m_A	914 GeV	a_2	914	$a_1 \rightarrow 2g$	0.176
$\tan eta$	7.5	h_3	914	$a_1 o c \bar{c}$	0.020
μ_{eff}	150 GeV	H^{\pm}	917	$a_1 \rightarrow \mu^+ \mu^-$	0.0030

BP2 Target: $9.9 < m_{a_1} < 10.5$ GeV, $m_{h_1} \approx 100$ GeV, $m_{h_2} \approx 125$ GeV

Parameter	Value	Scalar	Mass [GeV]	Decay	Br [%]
λ	0.0021	a_1	10.3	$h_1 \rightarrow 2a_1$	0.0399
κ	0.00076	h_1	96.9	$h_2 \rightarrow 2a_1$	5.9×10^{-6}
m_P	10.4 GeV	h_2	121	$a_1 \to \tau^+ \tau^-$	0.792
m_A	2667	a_2	2662	$a_1 \rightarrow 2g$	0.174
aneta	7.7	h_3	2663	$a_1 \rightarrow c\bar{c}$	0.020
μ_{eff}	138	H^{\pm}	2667	$a_1 \rightarrow \mu^+ \mu^-$	0.0030

SiD, January 2015 - p.20/23

Recast BP0 to BP1, BP2

Denote the reduced couplings $\xi_i \equiv g_{ZZh_i}/g_{ZZh_{SM}}$. Scale factors from the signal yield expression $N = \epsilon \sigma B \int dt \mathcal{L}$:

$$\frac{N_{xy}}{N_0}(m_{h_1}) = \frac{\epsilon}{\epsilon_0}(m_{h_1})\frac{\Phi}{\Phi_0}(m_{h_1})\left(\frac{\xi_1}{\xi_1^0}\right)^2 \frac{B(h_1 \to 2a_1)B(a_1 \to x)B(a_1 \to y)}{B_0}$$
$$\frac{N_{xy}}{N_0}(m_{h_2}) = \left(\frac{\xi_2}{\xi_2^0}\right)^2 \frac{B(h_2 \to 2a_1)B(a_1 \to x)B(a_1 \to y)}{B_0}$$

MG5_aMC@NLO2.2.0 is used to determine ϵ and Φ . Initial studies indicate $\epsilon/\epsilon_0 \approx 1$. NMSSMTools4.4.4 provides the reduced couplings $\xi_{1,2}$ and branching ratios *B*.

Point	ξ_1	ξ_2	$h_1 \rightarrow 2a_1$	$h_2 \rightarrow 2a_1$	$a_1 \to \tau^+ \tau^-$	$a_1 ightarrow \mu^+ \mu^-$
BP0	0.792	0.610	0.854	0.875	0.732	0.00276
BP1	0.0284	0.999	0.987	6.0×10^{-5}	0.790	0.00299
BP2	0.101	0.995	0.0399	5.9×10^{-6}	0.792	0.00298

Scale Factor Φ/Φ_0

Phase space scale factor as a function of m_{h_1} determined with MG5_aMC@NLO.

SiD, January 2015 – p.22/23

Status and Plans

The NMSSM

- The NMSSM is highly motivated both theoretically and experimentally.
- The h_{125} mass and signal strength measurements provide very strong constraints on NMSSM Higgs phenomenology.
- If a low mass pseudoscalar $9.9 < m_{a_1} < 10.5$ GeV is assumed, as motivated by the anomalous muon magnetic moment and η_b spectroscopy, the model becomes highly predictive.

Snowmass Study

- The Snowmass SiD study SNOW13-00133 (1309.0021) assumed signal strengths which are now excluded, so the study will be recast for scenarios which survive all h_{125} constraints.
- - The $e^+e^- \rightarrow Zh_i$ cross section depends on the reduced ZZh_i couplings, which in turn depend on the mixing of h_1, h_2, h_3 .
 - Challenging NMSSM points will provide excellent benchmarks for detector development with more sophisticated reconstruction techniques than were used for this study.
 - A systematic study of remaining viable NMSSM points is underway.