Manpower and space requirements for ILD 2015/1/13 Y. Sugimoto @SiD meeting at SLAC # MANPOWER REQUIREMENT (+MEXT REVIEW) # Survey in ILD - In ILD, we have been surveying resource requirements - In each phase : preparation (4 years), construction, operation - In each sub-system - In each area (for human resource): home institutes, main campus, IP campus - This survey has two-fold purposes - Input to a LCB subcommittee on governance and management (Chair: B.Foster) through ILC Infrastructure and Planning WG (Chair: S.Yamada) - Number of people on-site - Requirements on campus / facilities - Input to the MEXT TDR validation WG - Budget and human resource needed for preparation (R&D), construction, and operation - These numbers for detectors will not be shown in 5 min presentation in the next WG meeting on Jan 26th (these numbers for Acc and CFS will be reported), but we might be asked to show these numbers at any time #### WG under LCB #### Committee under MEXT ILC Task Force in MEXT Academic experts committee http://www.mext.go.jp/b_men u/shingi/chousa/shinkou/038/i ndex.htm #### Particle-Nuclear physics WG Members are physicists from; HEP(6), Nuclear physics, Cosmic-ray, Astronomy, Accelerator(2), Particle theory, Nuclear theory, Cosmology, Science communication #### TDR validation WG Members are accelerator physicists from; KEK(3), JAERI, Riken(2), NIRS, HiSOR, JASRI/Spring8, CROSS-Tokai We need information from detector groups #### What MEXT wants to know ## Status of the survey in ILD - Each sub-system group (including physics analysis) has been asked to show their estimate on budget and human resource requirements in each phase / area - In the construction period, timeline of the human resource requirement was made according to an assumption of the construction schedule (next slide) - Still temporary numbers are given for several sub-systems - Magnet (Yoke and coil) - Common engineering - SET/ETD - FCAL - Resource requirements in preparation (R&D) phase - Not estimated yet - Global DAQ - Running cost (Y10) ## Assumption of ILD construction #### Timeline - A tentative time line was drawn based on the schedule in TDR (Figure 14.10. in Vol.3-II) and recent CFS study - Assembly hall is assumed to be built in 2 years from ground breaking | | | | | | | | | | | ILD | asser | nbly | y tin | nelin | e fo | r H | ybri | d o | ption | (CN | 1S st | :yle | asse | emb | ly)) | | | | | | | | | | | | | |------------------|------------|------|------|------|-----|------|----|-----|-------|-------------------|----------------------------|-----------------------|---|--------------------------|------|-------------------------------------|---------|--------|-----------------|--------------------|----------------------|-------|--------|----------------------|----------------------|---------------|---------------|-------|------------------------|--------------|-------------------|------|----------|------|------|------|---------| | Sub-detector | Y-3 | | | Y-2 | | | | Y-1 | | | Y1 | | Y | '2 Y | | '3 | | Y4 | | | Y5 | | | Y6 | | Y7 | | | Y8 | | | Y9 | | | Y10 | | | | | Q1 0 | 2 Q3 | Q4 (| Q1 Q | 2 Q | 3 Q4 | Q1 | Q2 | Q3 Q4 | Q1 Q2 | Q3 Q | 4 Q1 | Q2 | Q3 Q4 | 4 Q1 | Q2 | Q3 C | Q4 Q | (1 Q2 | Q3 Q | 4 Q1 | Q2 | Q3 Q | 4 Q: | Q2 | Q3 Q4 | Q1 | Q2 (| Q3 Q | 4 Q1 | L Q2 | Q3 C | Q4 Q | 1 Q2 | Q3 Q | 1 Q1 | Q2 Q3 (| | Detector Hall | | | | | | | | | | Excavation/Utilit | | | | | | | litie | es | Assembly Hall | | | | | | | | | | | Cons | | | | | | | | | | | | Exter | ition | | | | | | | | | | | | | | | VTX | | | | | | | | | | | TDR | | | Construction off site | | | | | | | | | | | Assembly on site Ins | | | | | | | | | | | | | | SIT | | | | | | | | | | TDR | | | | Construction off site | | | | | | | | | | Assembly on site Ins | | | | | | | | 0 | | | | | | | FTD | | | | | | | | | | | TDR | | | Construction off site | | | | | | | | | | Assembly on site Ins | | | | | ng | ommissioning | | Ĩ | | | | | | | TPC | | | | | | | | TD | R | | | Construction off site | | | | | | | | Asse | | | | | embly on site | | | 5 | Detector commissioning | | Sion | | | | | | | | FCAL | | | | | | | | TD | R | | | | | Construction off site | | | | | | е | | | | | Ass | embly on site | | - | Ins | issi | | nis | | 5 | | | | | ECAL (Barrel) | | | | | 1 | ΓDR | | | | | | | | Construction off site | | | | | | | Ass. On site | | Instal | | | 50 | | | Ē | | Ē | sics | | | | | | | ECAL (End cap) | | | | | 1 | ΓDR | | | | | | Co | onstri | struction off site | | | | | Ass. | On si | ite | Insta | II | | | | | ering | | | 8 | | | | 후 | | | | HCAL (Barrel) | | | | | 1 | ΓDR | | | | | Construction off site | | | | | | Ass. On | | n site | te Install | | | | | lowe | | | ţ | | Accelerator | Ready for physics | | | | | | | | HCAL (End cap) | | | | | 1 | ΓDR | | | | | uction off site | | | | | Ass. On site Ins | | tall | | | | | | | | | | ţe | | 9 | 5 | 4 | | | | | | | Coil | | | | TDR | ł | | | Bi | b | Modul | Modules construction off | | | | | off site Modules const. off site/as | | | | | assembly on site Ins | | | | | | FI | M | Detector | | | ے | | 2 | į | e a | | | Iron Yoke | | | | TDR | ł | | | Bi | b | Modul | es cons | struc | ruction off site Modules construction off site/ring | | | | | | | g assembly on site | | | | | ete | | | | | | • | | | | | | | | Muon det | | | | | 1 | ΓDR | | | | | Construction off site Ass. | | | | | | | On si | ite | e Install | | | | | | | | | | | | | | | | | | | DAQ | | | | | | | | | | | TDR | Construction | | | | | | ıctioı | on off site Ass | | | | | Assembly on site | | | Commissioning | | | | Operation | | | | | | | | Computing | | | | | | | | | | | | | | TDR Bid Delivery on site | | | | | | | Operation | | | | | | | | | | | | | | | | | | Physics/software | Simulation | | | | | | | | | | | TDR | | | | | | | Simi | | | | | ulation | | | | | | | | | Analysis | Ins: Install | F | M: F | ield | map | ping | | | | | | #### FTE from external institutes (Students are not included) ### FTE from ILC Lab. #### FTE in each area on site #### Assumption - There are main campus near Shinkansen station and satellite campus near (above) IP (IP campus) - In IP campus, there is a main building which includes office rooms, laboratories, and clean rooms - ILD construction scenario: - VTX, SIT, and FTD are installed into the inner support tube (L~8m) in a clean room, and installed into ILD as a "Inner Si tracker" in the detector hall - TPC MPGD modules are installed into the end-plate in a clean room, and whole TPC is installed into ILD in the detector hall - Calorimeter/Muon-detector modules are tested in a laboratory at IP campus, and installed into ILD in the assembly hall #### FTE of scientists on site #### FTE in each area on site # FTE in each area on site including "Labor" except for magnet #### Some issues - Conversion of manpower to cost - In TDR, only "Labor" is converted to cost, and in-house employees such as professors are not converted to cost - In accelerator, all scientists in-house is converted to cost - If we (physics/detector) do the similar way, the cost becomes enormous - At present, we do not try to convert in-house manpower into cost | ILD construction | Person*Year | MILCU | |----------------------------|-------------|-------| | M&S | | 387 | | Labor (Temporary employee) | 1400 | 130 | | In-house scientists | 4200 | 550 | ## TDR validation WG meeting - In next TDR validation WG meeting on Jan.26th, detector issues will be discussed - But the allocated time is only 5 min. - We have prepared 3 page presentation (+ back-up slides), and sent it to MEXT on Jan. - Resource issues are not discussed in the slides except for the number of signatories in LOI - But we should be ready to answer on these issues when asked ## **SPACE REQUIREMENT** # Space requirements of ILD - We have not made this kind of survey in ILD yet - My tentative guess is as follows - IP Campus building - Laboratory and clean room - Sub-detector assembly & test before installation / maintenance - Control room - ~1/2 floor of 25mx60m building - Office - Rooms for 70~140 persons - 3.5mx5.8m x35 rooms (2~4/room) \rightarrow ~1 floor - Main Campus - Office: - Rooms at least for 120 persons - 3.5mx5.8mx60 rooms (>2/room) - The site should have extra space (land) to build additional office building later if necessary ## Laboratory space - Because of difference in installation schedule, the same space can be used by different sub-detectors; - HCAL → TPC - ECAL → Si trackers - MUON → FCAL, ETD ## Office space It seems ~34 office rooms can be put in a floor with meeting rooms, rest rooms, elevators in common space ### **SUMMARY** ## Summary - Our guess on the human resource requirement of ILD is; - -20-25 FTE from ILC labo. - ~500 FTE from external labo./university - Among them, 70 (running period) 140 (construction period) FTE are working at IP campus, and >120 FTE are working at Main campus - If students are taken into account, these numbers would increase - Space requirement of ILD in IP campus building (25x60m²) would be; - ~35 office rooms and several meeting rooms (~1 floor) - ~0.5 floor for a control room and laboratory (clean room) space - Each sub-detector group should study the process of construction and maintenance in detail to get more reliable number (by when?) ### **BACK-UP SLIDES** # Resource need in R&D phase - Assumption in TDR validation WG - After approval of the ILC project, 4 years are necessary for the preparation to get ready for construction - We can expect larger amount of budget in this preparation period - We are requested to clarify budget and human resource needed in this period - A rule of thumb; 10 20% of construction cost/manpower - But we should try to estimate by ourselves - Estimate of each sub-detector will not be disclosed: ILD R&D cost as a whole - What happens on detectors in this period - R&D - Proposal - Technology choice - Detailed (construction ready) design - Industrialization - TDR of sub-detectors