ILC Acc. Status in Japan:

focusing to prepare for the "Preparation Phase"

Akira Yamamoto
(KEK, LC Project Office)
To be presented in SiD meeting, SLAC, 13 Jan. 2014

ILC Time Line: Progress and Prospect

MEXT's Organization for Studying ILC

based on SCJ's Recommendation

MEXT, ILC Physics WG Members

- T.Kajita: Chair, Director of Institute of Cosmic Ray Research, Univ. Tokyo Cosmic-ray physics,
- S. Okamura: Hosei Univ., (former Professor of Univ. Tokyo) -- Astrophysics
- H. Koiso: Head for KEK-B Accelerator of KEK -- Accelerator
- S. Komamiya: ICEPP, University of Tokyo Particle physics
- H. Sakai: RIKEN, and former Prof. of Univ. of Tokyo. Nuclear physics
- H. Shimizu: Tohoku University Nuclear Physics
- S. Tanahashi: Nagoya University -- Particle Physics (theory)
- K. Tokushuku: Deputy Director of IPNS (physics), KEK, Particle physics
- T. Nakano: Osaka University, Director of RCNP Nuclear physics,
- T. Nakaya: Kyoto University Particle physics (neutrino),
- T. Hatsuta: RIKEN -- Nuclear and Hadron Physics (Theory),
- S. Matsumoto: IPMU, University of Tokyo, Particle physics (Theory),
- M. Yamauchi, Director of IPNS (Physics), KEK Particle physics,
- T. Yamanaka; Osaka University, -- Particle physics (Kon rare decay),
- H. Yokoyama, University of Tokyo Science literacy, public relation in S&T

ILC TDR Verification WG Memebership

H. Yokomizo Chair, Former Deputy Director for JPARC Center – Accelerator Science

T. Koseki KEK, Head of JPARC Linear Accelerator --- Accelerator Science

T. Kato JAEA, Deputy Director for JPARC Center --- Cryogenics

S. Kamigaito RIKEN, Head of Accelerators – Accelerator Science

T. Kumagai JASRI (Spring-8), Trustee – Accelerator Science

H. Koiso KEK, Head of KEK-B Accelerator – Accelerator Science

S. Sasaki Hiroshima U. --- Accelerator Science and Photon Science

H. Tanaka RIKEN, Spring-8 --- Accelerator Science

F. Naito KEK, Head of JPARC Linear Accelerators – Accelerator Science

K. Noda NIRS – Accelerator Science and Medical Application

5

Schedule for Committee and WGs

Experts committee		
date		
1	May, 2014	
2	Nov. 2014	
(3)	April, 2015	

Physics WG			
	date	Subject	
1	6/24	Status of Particle Physics and ILC physics overview	
2	7/29	Future prospect in the US and in Europe	
3	8/27	Cosmic-ray and Astrophysics, and ILC	
4	9/22	Flavor and Neutrino physics, and ILC	
5	10/21	Interium summary to be input to the Experts Committee	
6	1/6	Experience from SSC	

	TDR Validation WG			
	date	Subjects		
1	6/30	Overview		
2	7/28	ML and SRF		
3	9/8	SRF Q&A,, CFS		
4	11/4	Schedule and Project Management including Cost and Human Resource		
5		Acelerator system (Source, DR, BDS etc). Detectors How to prepare for human resource		

ILC TDR Layout

Technical Highlight in TD Phase

SCRF Technology

- Cavity: High Gradient R&D:
 - 35 MV/m with 50% yield by 2010, and 90% by 2012 (TDR)
 - Manufacturing with cost effective design
- Cryomodule performance including HLRF, and LLRF
- Beam Acceleration
 - 9 mA: FLASH
 - 1 ms: STF2 Quantum Beam

Nano-beam handling

- ILC-like beam acceleration
 - 4 pm: Ultra-low beam emittance: Cesr-TA, ATF
 - 44 nm: Ultra-small beam size at FF at ATF2
 - corresponding to ~7 nm at ILC energy

Two Detector Concepts in the ILC TDR

The number of Participants

- Large R with TPC tracker
- LOI signatories: 32 countries, 151 institutions, ~700 members

ILD

SiD

- High B with Si strip tracker
- LOI signatories: 18 countries,
 77 institutions, ~240
 members

Features of ILC Detectors

- ILC detector performances
 - P resolution: X 100 of LHC
 - 細密度:X 100~1000 of LHC
- It may be realized under very clean condition compared with LHC
- Cost to be equivalent or less compared with LHC detectors

ILC Project Overview anticipated

Years	TDR baseline Scenario
1 - 2	Pre-preparation for 2yrs (We are here!)
3 - 6	Preparation (4 yrs)
7 - 15	Construction (9 yrs)
(12 -)	(start installation)
16 -	Beam Commissioning start
17 –	Operation at 250 ~ 500 GeV (550 GeV)
TBD	Toward 500 GeV HL upgrade
TBD	Toward 1 TeV upgrade

ILC 準備期間に於ける主要課題

Main issues in the ILC Preparation Phase

分野 (field)	課題 (Issues/Subjects)	協力体制 (Global Cooperation)
施設設計 CFS	候補地特性を反映した地質環境調査: Site-specific CFS design, env. assess. 基本計画、詳細設計、図面整備 General plan, eng. Design, drawings	JP-CFSがコアとな TO be discussed more の連携 in later session JP-CFS to take a central role in cooperation with global experts and regional experts.
加速器設計 Acc. Design Int.	詳細設計・パラメータ最適化 Engineering design, Parameter optim.	LCC-ILCを中心とした国際連携による検討 LCC-ILC to take a central role with global cooperation
SRF技術 SRF	製造・性能検証技術、 Fabrication & Test tech. (Hub-function) 性能の安定化 Stabilization of the performance	Tesla Tech. Collab., as common community - KEK-STF: Hub-Lab function - EXFEL: mass production and testing - LCLS: mass production and testing
ナノビーム技術 Nano-beam	低エミッタンス、極小ビームの安定的 実現、運用 Ultra low emittance, nano-beam to be realized and stabilized	ATF Collab. As common community - KEK-ATF to be maximized in use, as a global unique facility for next generation training as well as the advance studies.
研究所運営 Management	新国際研究所の設立準備 Preparation for the int'l ILC laboratory	今後の検討課題 A main Issue for the ILC to be prepared

A, Yamamoto, 2015/1/13-S1 ILC Acc. Satus in Japan 12

CFS related works in progress to be discuss more in later sessions

- Site specific CFS work assuming Kitakami-site:
 - Accelerator Layout including IR location to be optimized
 - Detector hall design with the vertical shaft access
 - Assuming the IR point shifted ~ 800 m to north,
 - Authorized by Change Management Board (CMB), as CR-003.
 - ML "tunnel" length, under investigation (CR-004), to be optimized further for:
 - Matching of e+ and e-accelerator lengths for the adequate timing,
 - Reserving further adequate operational margin of SRF cavity

ILC Candidate Location: Kitakami Area

ILC 準備期間に於ける主要課題

Main issues in the ILC Preparation Phase

分野 (field)	課題 (Issues/Subjects)	協力体制 (Global Cooperation)
施設設計 CFS	候補地特性を反映した地質環境調査: Site-specific CFS design, env. assess. 基本計画、詳細設計、図面整備 General plan, eng. Design, drawings	JP-CFSがコアとなり国際連携、候補地域との連携 JP-CFS to take a central role in cooperation with global experts and regional experts.
加速器設計 Acc. Design Int.	詳細設計・パラメータ最適化 Engineering design, Parameter optim.	LCC-ILCを中心とした国際連携による検討 LCC-ILC to take a central role with global cooperation
SRF技術 SRF	製造・性能検証技術、 Fabrication & Test tech. (Hub-function) 性能の安定化 Stabilization of the performance	Tesla Tech. Collab., as common community - KEK-STF: Hub-Lab function - EXFEL: mass production and testing - LCLS: mass production and testing
ナノビーム技術 Nano-beam	低エミッタンス、極小ビームの安定的 実現、運用 Ultra low emittance, nano-beam to be realized and stabilized	ATF Collab. As common community - KEK-ATF to be maximized in use, as a global unique facility for next generation training as well as the advance studies.
研究所運営 Management	新国際研究所の設立準備 Preparation for the int'l ILC laboratory	今後の検討課題 A main Issue for the ILC to be prepared

A, Yamamoto, 2015/1/13-S1 ILC Acc. Satus in Japan 15

ILC-ACC 国際協力·組織構成

ILC Accelerator Organization

LCC-ILC Director: M. Harrison, Deputies: N. Walker and H. Hayano				*KEK LC Project Office He	ad: A. Yamamoto
Sub-Group	Global Leader Deputy/Contact p.	KEK-Leader* Deputy	Sub-Group	Global Leader Deputy/Contact P.	KEK-Leader* Deputy
ADI	N. Walker (DESY) K. Yokoya(KEK)	<u>K. Yokoya</u>	SRF	H. Hayano (KEK) C. Ginsburg (Fermi), E. Montesinos (CERN)	<u>H. Hayano</u> Y. Yamamoto
Sources (e-, e+)	W. Gai (ANL) M. Kuriki (Hiroshima U.)	T. Omori	RF	S. Michizono (KEK) TBD (AMs , EU)	S. Michizono T. Matsumoto
Damping Ring	<u>D. Rubin (Cornell)</u> N. Terunuma(KEK)	N. Terunuma	Cryogenics (incl. HP gas)	H. Nakai: KEK T. Peterson (Fermi), D. Delikaris (CERN)	<u>H. Nakai</u> Cryog. Center
RTML	<u>S. Kuroda (KEK)</u> A. Latina (CERN)	S. Kuroda	CFS	V. Kuchler (Fermi) M. Miyahara (KEK), J. Osborne (CERN),	M. Miyahara T. Sanuki
Main Linac	N. Solyak (Fermi) K. Kubo (KEK)	<u>K. Kubo</u>	Rad. Safety	T. Sanami (KEK) TBD (AMs) S. Roesler (TBD, CERN)	T. Sanami T. Sanuki
BDS	G. White (SLAC), R. Tomas (Cern) T. Okugi(KEK)	T. Okugi	Elect. Support (PS etc.)	TBD	<u>TBD</u>
MDI	K. Buesser (DESY) T. Tauchi (KEK)	T. Tauchi	Mechanical S. (Vac. & others)	TBD	TBD
A, Yamamo	:o, 2015/1/13-S1	ILC A	Dom. Program, Chub Lab. Funct.	TBD	H. Hayano T. Saeki

ILC 準備期間に於ける主要課題

Main issues in the ILC Preparation Phase

分野 (field)	課題 (Issues/Subjects)	協力体制 (Global Cooperation)
施設設計 CFS	候補地特性を反映した地質環境調査: Site-specific CFS design, env. assess. 基本計画、詳細設計、図面整備 General plan, eng. Design, drawings	JP-CFSがコアとなり国際連携、候補地域との連携 JP-CFS to take a central role in cooperation with global experts and regional experts.
加速器設計 Acc. Design Int.	詳細設計・パラメータ最適化 Engineering design, Parameter optim.	LCC-ILCを中心とした国際連携による検討 LCC-ILC to take a central role with global cooperation
SRF技術 SRF	製造・性能検証技術、 Fabrication & Test tech. (Hub-function) 性能の安定化 Stabilization of the performance	Tesla Tech. Collab., as common community - KEK-STF: Hub-Lab function - EXFEL: mass production and testing - LCLS: mass production and testing
ナノビーム技術 Nano-beam	低エミッタンス、極小ビームの安定的 実現、運用 Ultra low emittance, nano-beam to be realized and stabilized	ATF Collab. As common community - KEK-ATF to be maximized in use, as a global unique facility for next generation training as well as the advance studies.
研究所運営 Management	新国際研究所の設立準備 Preparation for the int'l ILC laboratory	今後の検討課題 A main Issue for the ILC to be prepared

A, Yamamoto, 2015/1/13-S1 ILC Acc. Satus in Japan 17

SCRF Procurement/Manufacturing Model

空洞・CMの製造および性能試験

Cavity/Cryomodule Fabrication

16,024 台 x 1.1

1,855 台

A Model for Cavity and CM Production and Qualification Process

空洞とクライオモジュール製造と性能評価

エ州こうプイオ こう	エール表近と性能計	Щ	/	`\
Step hosted	Industry	Industry/ Laboratory	Hub- laboratory	ILC Host- laboratory
Regional constraint	no	yes or no	yes	yes
Sub-comp/material - Production/Procurement	Nb, Ti, specific comp		Procurement	
9-cell Cavity - Manufacturing	9-cell-cavity, Process, He-Jacketing	<	Procurement	
9-cell Cavity - Performance Test			Cold, gradient test	
Cryomodule component - Manufacturing	V. vessel, cold-mass		Procurement	
Cryomodule/Cavity - Assembly		Cav-string/ CM-assembly		
SCRF Cryomodule - Performance Test			Cold, gradient test	
Accelerator integration, Commissioning				Accelerator sys. Integ
A Vamamoto 2015/1/13-S1	II C Acc 9	Satus in Janan	/	<i>.)</i> 20

STF2; SCRF ACCELERATOR PLAN AT KEK

Objective

- High Gradient (31.5 MV/m)
 Demonstration of full cryomodule
- Pulse and CW operation (for effectuve
- Training for next generation s

Plan:

- Multiple CM for system study
- In-house Cavity to be installed in cooperation with industry
- Wide range application including Photon Science

A, Yamamoto, 2015/1/13-S1 21

A Photo at STF-2, in May, 2016

Progress in Cavity low-power-test at STF2 CMs, October – November, 2014

STF-II Facility being extended Facility to demonstrate Full CM assembly/test

Plan of STF R&D beyond TDR

ILC 準備期間に於ける主要課題

Main issues in the ILC Preparation Phase

分野 (field)	課題 (Issues/Subjects)	協力体制 (Global Cooperation)
施設設計 CFS	候補地特性を反映した地質環境調査: Site-specific CFS design, env. assess. 基本計画、詳細設計、図面整備 General plan, eng. Design, drawings	JP-CFSがコアとなり国際連携、候補地域との連携 JP-CFS to take a central role in cooperation with global experts and regional experts.
加速器設計 Acc. Design Int.	詳細設計・パラメータ最適化 Engineering design, Parameter optim.	LCC-ILCを中心とした国際連携による検討 LCC-ILC to take a central role with global cooperation
SRF技術 SRF	製造・性能検証技術、 Fabrication & Test tech. (Hub-function) 性能の安定化 Stabilization of the performance	Tesla Tech. Collab., as common community - KEK-STF: Hub-Lab function - EXFEL: mass production and testing - LCLS: mass production and testing
ナノビーム技術 Nano-beam	低エミッタンス、極小ビームの安定的 実現、運用 Ultra low emittance, nano-beam to be realized and stabilized	ATF Collab. As common community - KEK-ATF to be maximized in use, as a global unique facility for next generation training as well as the advance studies.
研究所運営 Management	新国際研究所の設立準備 Preparation for the int'l ILC laboratory	今後の検討課題 A main Issue for the ILC to be prepared

A, Yamamoto, 2015/1/13-S1 ILC Acc. Satus in Japan 26

KEK-ATF2: BDS, FF Test for ILC

- Modeling of ILC BDS
 - Same Optics:
 - Int'l Collab.
- ~25 Lab., > 100 Collaborators
- Goal:

FF Beam Size: 37 nm

- (corresponding to 5.9 nm at ILC

KEK-ATF2: BDS, FF Test for ILC

		Parameter	ILC	ATF2
•	Mode	Beam Energy [GeV]	250	1.3
	Ca	Energy Spread (e ⁺ /e ⁻) [%]	0.07/0.12	0.06~0.08
	– Sa	Energy Spread (e+/e-) [%] Final quad – IP distance (L*) (SiD/ILD	3.5/4.5	1.0
	– In	detector) [m]		
		Vertical beta function at IP (β^*_y) [mm]	0.48	0.1
•	~25	Vertical emittance [pm]	0.07	12
		Vertical beam size at IP (s* _y) [nm]	5.9	37
	Coalı	L^*/β^*_y (~natural vertical chromaticity, SiD/ILD detector)	7300/9400	10000
	Goal:	enrollment, Sib/ILD detector)		

FF Beam Size: 37 nm

– (corresponding to 5.9 nm at ILC

Progress in Beam Size at ATF2

Collaborators visiting ATF for Nano-Beam Handling Research

先端加速器技術開発に果たしているKEK-STF, ATF の役割・意義・実績

KEK-STF and ATF Contribution to the Adv. Acc. Technology Development

	STF	ATF
国際連携 Int'l community	Tesla Technology Collab.	ATF Collaboration Unique facility, worldwide
参加国 Participating countries	Germany, Italia, Swiss, France, USA, China, Korea, India, Japan, etc	Swiss, Germany, France, UK, Italia, Spain, Russia, USA, China, India, Korea, Japan, etc.,
国際協力機関数 Numbers of institutions,	~13	~ 25
参加メンバー数 Number of collaborators	~50	55
主な成果 Major progress	S1-Global: Int'l CM test, Quantum beam, In-house Cavity Fabrication New diagnostics	Ultra low emittance beam, Nano-beam test reaching 44 nm.,
博士号取得者数 PhDs awarded	5	52
修士号取得者数 Master deg. Awarded	5	18

ATF 2 Further Plan

ILC 準備期間に於ける主要課題

Main issues in the ILC Preparation Phase

分野 (field)	課題 (Issues/Subjects)	協力体制 (Global Cooperation)
施設設計 CFS	候補地特性を反映した地質環境調査: Site-specific CFS design, env. assess. 基本計画、詳細設計、図面整備 General plan, eng. Design, drawings	JP-CFSがコアとなり国際連携、候補地域との連携 JP-CFS to take a central role in cooperation with global experts and regional experts.
加速器設計	詳細設計・パラメータ最適化	LCC-ILCを中心とした国際連携による検討
Acc. Design Int.	Engineering design, Parameter optim.	LCC-ILCを中心とした国际建場による機能 LCC-ILC to take a central role with global cooperation
SRF技術 SRF	製造・性能検証技術、 Fabrication & Test tech. (Hub-function) 性能の安定化 Stabilization of the performance	Tesla Tech. Collab., as common community - KEK-STF: Hub-Lab function - EXFEL: mass production and testing - LCLS: mass production and testing
ナノビーム技術 Nano-beam	低エミッタンス、極小ビームの安定的 実現、運用 Ultra low emittance, nano-beam to be realized and stabilized	ATF Collab. As common community - KEK-ATF to be maximized in use, as a global unique facility for next generation training as well as the advance studies.
研究所運営 Management	新国際研究所の設立準備 Preparation for the int'l ILC laboratory	今後の検討課題 A main Issue for the ILC to be prepared

A, Yamamoto, 2015/1/13-S1 ILC Acc. Satus in Japan 33

TDR におけるILC加速器建設に必要な研究所の人材 (FTE)

HR required in TDR for the ILC acc. Construction

		Integ. Labor in (Person-hr)	Integ. labor in (p-yr)	平均/年 Av. In yr	規模 Staff/yr	-1
	Acc. Constr (9 yrs)	<u>22,898</u>	<u>13,471</u>			28.5%
1	CFS + Survey/Align.	1,359 (6%)	800	89	٦	-5
2	Acc. (SRF-ML)	6,520 (<mark>28.5%</mark>)	3,835	426	1,124	
3	Acc. (etc)	5,321 (23%)	3,130	348	~1.0	00 staff needs to be
4	Administration	3,998 (17.5%)	2,352	261	1	zed for the ILC
5	Install. (in ~4 yr)	5,700 (25%)	3,353	(+838)	acce	lerator. construction
		Given in TDR				

参考: For a reference:

- 国際的連携をもつ加速器研究所の規模 = 人材源の国際的な基盤:
 - Staff numbers of particle and accelerator laboratories, related to ILC, and global base:
 - CERN: ~ 2500, DESY: ~2,400, CEA-Saclay: ~4,200, CNRS-LAL: (TBD), etc..
 - Fermilab: ~1,700, SLAC: ~1,700, BNL: ~3,000, JLab: ~800, etc.,
 - KEK: ~750, IHEP: ~1,400, PAL: (TBD), RRCAT: (TBD), etc.,
- これらの研究所・大学を基盤とした国際協力・連携によりILC の建設・運用が計られる。
 - ILC is planned to be realized, based on global cooperation with the above institutions.

ILC 加速器建設にむけた研究所人材構想

[人・年(FTE) 国際協力分担の仮定を含む]

[HR considered for the ILC preparation, linked to construction (FTE)]

Notes: HR required for the ILC preparation (CFS, Acc., and administration):

- HR in the 1st preparation year to be filled from the existing staff in fraction of ~80%),
- HR needs to be gradually increased to reach a factor 1/5 $^{\sim}$ 2, during the prep. phase,
- The guideline is to provide 10 %level in fraction to the staff required for the ILC laboratory,
- The global collaborators anticipated from a fraction of 5 % to 20% of existing ones,
- The Japanese HR needs to be boosted/complemented by using "sub-contract,
 - Worldwide fraction in japan,

A, Yama@F\$0,~290%/,1Acd. 60^70%, and (1/3 ~ 1/2 to be subcontracted) Japan

Revised: 150113

ILC Project-Cost Overview (for 500 GeV)

V- 1410122	Value 物件費	(-	ertainty -/+)		uman Resource Uncertain 労務費 (-/+)		/+)	Value+HR 物件+労務	Range 範囲	See	
	Oku- JY	%,	Oku- JY	P-hours	FTE	Oku-JY	%, (Oku-JY	Oku- JY	Oku-JY	note
Formal Preparation (4 years)											
Accelerator + CFS 加速器本体+施設+ADm	209 (123+91)				423	51			260		A1
Lab. Support. 共通: Land, Load, Lab	66 + TBD			TBD	TBD	TBD			66 + TBD		A1
Detectors	TBD			TBD	TBD	TBD			TBD		A1
Construction (9 years)											
Accelerator (Acc. + CFS) (TDR values)	8,309 (5,707+2602) <u>(7.98 BILC)</u>	26%	2,160	22.9 M	13,471	1,598	24%	384	9,907	7,363 ~ 12,451	A2
Lab. Support - Safety, Computing, etc	<u>TBD</u>			<u>TBD</u>		TBD			TBD		A2
Det. Constr	SiD: <u>315</u>		+127		748	89			<u>531</u>	404~531	A2
(for 9 yrs)	(315 MILC) ILD: 451 (392 MILC)		(+/-48)		1,400	150			601	553~649	
Full Operation (per year)											
Acc. + CFS Operation	<u>390</u> (390 MILC)	40%	156		<u>850</u> (TBD)	101	25%	25	491	TBD	А3
Lab. Support	TBD				TBD				TBD	TBD	А3
Det. Operation	TBD		11	 C Acc Sat	TBD us in Japan				TBD		А3

A, Yamamoto, 2015/1/13-S1

Schedule for Committee and WGs

Experts committee					
1	May, 2014				
2	Nov. 2014 (Status report given				
(3)	April, 2015 (Interimu Report expected				

TDR Validation WG					
1	6/30	Overview			
2	7/28	ML and SRF			
3	9/8	SRF Q&A,, CFS			
4	11/4	Schedule and Project Management including Cost and Human Resource			
5	(1/26)	Acelerator system (Source, DR, BDS etc). Detectors How to prepare for HR and Preparation Phase			

LCC visiting Tohoku

January 13, 2015

Primary School Children's Work for ILC

Daito-Cho, January 13, 2015

ILC Double Cream Roll

Best Awarded; World-wide Children getting together for ILC

Summary

- ILC Project is in a formal investigation process conducted by the MEXT "Wise Person's Committee, associated with two working groups (for Science and TDR).
 - We are working hard to provide all necessary information in cooperation with LCC.
- An official evaluation/judgment by the Japanese Government is expected in (by the end of) JFY2016.
 - We need to wait for it with patience.
- Project plan, including the preparation and operation, needs to be further established
 - We need much more input from detector systems, through close communication.

Acknowledgements

- We would thank:
 - two detector groups and MDI-CFS collaboration specially to have realized a revision of the **Detector Hall design** with "Vertical-shaft Access", including the Change Management Process, led by M. Harrison and B. List, as a major progress after the TDR process, in last year.
- It will be further discussed by:
 - the CFS group led by C. Kuchler, in the next sessions.