4.1/9.1m L* Optics & Performance

Glen White, SLAC SiD Meeting, SLAC Jan 13, 2015

Overview

- Assessing impact of changes RDR->TDR
- FFS optics
 - Single L* @ 4.1m (QF1 L*=9.1m)
 - Optimal lattice configuration
- MDI-related studies
 - BDS collimation
 - IR detector solenoid compensation
 - IR diagnostics

RDR->TDR BDS Challenges

- Detailed studies of RDR configuration concluded BDS can deliver design lumi given 6nm emittance growth budget.
 - Including impact of all static & dynamic error sources, inter & intrabunch timescales.
 - This level of study not yet complete for TDR changes.
- Changes from RDR make BDS tuning more challenging
 - $-40 \rightarrow 35$ nm ε_v delivered emittance assumption
 - Increased IP β_x
 - Tighter BDS magnet tolerances (poorer tuning performance)
 - ATF2 experience has shown poorer performance with larger β_x^*
 - Larger QF1-QD0 separation
 - Tighter BDS magnet tolerances (poorer tuning performance)
 - 2 IR optics solutions (2 L* configs)
 - Poorer tuning performance (tuning time & collimation optimisation etc.)
 - No overhead from "waist shift"
 - Baseline lumi now includes vertical waist-shift effect, RDR did not.

L*=4.1m Optics Tools: MADX, MAPCLASS, SAD, Lucretia

- Have optics solutions for $E_{CM} = 250 \text{ GeV}$ with improved collimation performance by powering front halves of QF1 & QD0 magnets only.
- Tuning performance driven by QD0->QF1 distance
 - Prefer QF1 closer to QD0, also shorter QF1

Collimation depth & beam tuning simulation For different L* (T. Okugi, KEK)

MC Tuning Simulations (T. Okugi, KEK) – SAD + CAIN

- Tuning simulation results for E_{CM}=250,500 GeV
 - Compare magenta lines to outer green lines depicting design lumi
- 4.1, 9.1m QD0, QF1 L* configuration
- Standard tuning algorithms no longer sufficient to deliver design luminosirty, more work required in the future to specify a tuning system and/or improved assumption of BDS delivered beam quality.

Recover Tuning Performance @ Smaller L* by Moving in QF1

- Can recover lumi performance at small L* by moving QF1 closer to IP.
 - Improved collimation depth
- Would require moveable QF1 to be compatible with pushpull operations...

Software Improvements for Backgrounds & IR Studies

- 2 "new" tools, merging standard accelerator tracking options with GEANT-4 for RK style tracking through complex fields and/or materials.
- G4 interface added to Lucretia (supported by SLAC)
 - Control of G4 materials, fields and tracking through Lucretia Matlab data structures.
- BDSIM (supported by RHUL)
 - Standard accelerator tracking added within G4 framework
 - Writing ability to call BDSIM from within Lucretia.
- Collaboration: SLAC & RHUL
- In-use or planned for ILC BDS work:
 - Collimation system design
 - Muon flux calculations and collimation design
 - Detector solenoid tracking and compensation design

Lucretia + G4

Secondary Losses (ē,e+,gamma - E_{Cut}=10%)

- Developed to study collimation system for LCLS-II
- Currently studying losses in LCLS to verify modeling and possible improve LCLS collimation system.
- Will be useful for ILC BDS collimation modeling.

A BDSIM Accelerator Model

- Beamline built from ASCII input
- Geant4 model of accelerator automatically created
- Generic geometry created by default
 - typically cylinders of iron
 - more specific geometry can be specified or imported
- Normal Geant4 Runge-Kutta steppers are replaced
 - vacuum steppers replaced by maps for specific magnet types
 - much faster and more accurate for known fields ie quadrupolar
- Hits on accelerator recorded
- Integrated analysis for energy loss histograms
 - both ASCII and ROOT output supported

L. Nevay, S. Boogert, H. Garcia-Morales,

S. Gibson, R. Kwee-Hinzmann, J. Snuverink

ATF2 example

BDSIM LHC Model

- Created model of existing LHC for comparison
 - before using for HL-LHC simulations
- 3.5 TeV 2011 & 4TeV 2012 physics run lattices
- pybdsim python tools used to prepare inputs
 - supplied with BDSIM
 - allows easy conversion of inputs
 - can easily aggregate input information from various sources

NB no perspective

Comparison with LHC BLM Data

Data from R. Bruce et al, Phys. Rev. ST Accel. Beams 17, 081004 (2014)

Favorable comparison with Beam loss monitor data **SixTrack** 10.0 **Beam Loss Monitors BDSIM** 20200 20400 19800 20000 20600 S - Distance from IP1 (m)

Detector Solenoid Compensation $SiD - Solenoid Only (E_{CM} = 500 GeV)$

	Detector	A.sol Length (m)	A.Sol Pos (m) (u/s QD0 d/s face)		A.Sol Bz (max) / T	Dipole Bx / By (T) X 10 ⁻⁴
	SiD (e-)	0.662	0.439	-1.337	0.283	-0.626/-0.294
	SiD (e+)	0.704	0.610	1.264	0.278	-0.739/-0.297

Detector Solenoid Compensation $SiD - Solenoid + Anti-DID (E_{CM} = 500GeV)$

Detector	Y* (um)	Y' * (<u>urad</u>)	X* (um)	X'* (urad)	σ_y^* (nm)	σ_y/σ_{y0}
SiD (e-)	-141.9 (0)	-133.2 (-105.2)	-0.5 (0)	-1.4 (0.17)	171.5 (23.0)	29.1 (3.9)
SiD (e+)	141.9 (0)	132.3 (105.2)	-0.5 (0)	-1.4 (-0.79)	202.6 (23.0)	34.3 (3.9)

- Parentheses show values after anti-solenoid + QD0 dipole correction

Reduces to design 5.9nm

After applying <x'y>, <xy> & <Ey>
Linear correction knobs

IP Feedback Tolerances / IP Diagnostics

Simulate the kicker effect at three locations

M. Wang, SLAC

- No significant improvement for moving IP kicker to u/s QD0 location
- Jitter tolerance similar to RDR estimates
 - ~<100nm</p>
- Still consider d/s QD0 location for BPM to determine IP beam position

Negligible impact for rms jitter ~<100nm

IP

Summary

- FD configuration studies
 - Smaller L* better for vertical collimation depth
 - Larger L* (smaller QF1-QD0 distance) better for tolerances and lumi tuning performance
 - L* ~ 4m seems optimal, 4.1m proposed
 - Prefer smaller QF1-QD0 distance, and shorter QF1 magnet would also be benefical
 - Proposed QF1 L*=9.1m (0.4m closer to IP than baseline)
 - http://atf.kek.jp/twiki/bin/view/Main/ILCBDSOpticsStorage
- More work required on tuning algorithms to realize design luminosity
- IP diagnostics, FB kicker
 - Happy with FB kicker location between QF1 & QD0
 - Still would like to consider BPM option d/s QD0 for IP position information.
- New software tools for backgrounds & IR studies
 - Work started to specify collimation configuration & study backgrounds.
 - Study muon flux and consider more compact collimation system
 - Tools constructed to design IR solenoid compensation system
- More detailed report on these activities @ Asian LC workshop in April (KEK).