

TOT-FCC: Tunnel Optimisation Tool for the Future Circular Collider Introduction and lessons learnt

<u>C. Cook</u>, J. Osborne, P. Lebrun, Y. Robert, M. Jones, Y. Loo, C. Sturzaker, M. Sykes, on behalf of the Civil Engineering & Geology working group 27-07-2015

- Introduction to TOT-FCC
- Progression of options
- How to compare options?
- Lessons learnt
- Future plans

- Study area boundary
- General tunnel geometry
- 3D Geological model (Digital Elevation Model (DEM), Molasses rockhead, Limestone rockhead)
- Lake Geneva bathymetry
- Hydrology
- Environmentally sensitive and protected areas
- Urban areas
- Geothermal Activity

Introduction to TOT-FCC: Data

Data in the tool :

Study area boundary

- Confined by natural formations on all sides (Jura, Vuache, Pre-alpes, Lake Geneva)
- Dimensioned with early FCC machine shapes in mind:

General tunnel geometry

- Settled on 'quasi-circle' design after also looking at 'circular' and 'racetrack' designs.
- FCC circumference is a multiple of LHC :
 - 80 km (3.0x LHC)
 - 87 km (3.25x LHC)
 - 93 km (3.50x LHC)
 - 100 km (3.75x LHC)
- 12 shafts, one shaft at each point (A-L)

3D geological model: Geological rockheads & Digital Elevation Model (DEM)

Digital Elevation Model (DEM)

1) The DEM has been sourced from the EU Copernicus programme and has a quoted vertical accuracy of +/- 2.9m

2) Molasse rockhead contours developed by Geotechnique Appliquee Deriaz (GADZ)

GEOTECHNIQUE APPLIQUEE

3D geological model: Geological rockheads & Digital Elevation Model (DEM)

Development of geological rockheads (surfaces):

3) Seismic and geotechnical borehole data purchased from Bureau de Recherches Géologiques et Minières (BRGM)

4) This data was then processed by Geneva Geo Energy to create a Limestone rockhead depth map covering the FCC study area. GGE cautioned that due to interpolotion over large distances, local inaccuracies of up to +-50m are possible

Lake Geneva Bathymetry

- Geology underneath Lake Geneva is not yet well understood
- Some seismic soundings performed for the possible construction of a road tunnel
- Molasse bedrock covered by a deep layer of moraines

Environmentally sensitive areas

- Natural parks
- Areas of biological significance and wetlands
- Protected water sources
- Groundwater (aquifers)

Buildings

- Buildings data covers both the Swiss and French sides of the FCC study area.
- In Switzerland, the data includes buildings with planning permission (shown in light blue)

Geothermal boreholes

- Over 1800 boreholes in the FCC study area ranging from 20m 400m in depth.
- Only 10 to 20 boreholes are usually within a 50m radius of a given FCC tunnel option under study

Introduction to TOT: Interface

- Max value extracted from early project data
- Iterative process and comparison of options
 data & knowledge increases and
 assumptions change
- Development began in Feb 2014, first results in September 2014
- TOT-ILC currently under development collaboration between CERN, KEK and ARUP

User interface - Input parameters

John Osborne (CERN-GS)

User interface - Input parameters

Introduction to TOT: Interface

User interface – Alignment profile

User interface – Outputs

80km

80km

General Positioning
80km 87km & 93km s

80km, 87km & 93km share the same location for point A in Meyrin area

87km

93km (option 1a)

80km

General Positioning

Prevessin area

 80km, 87km & 93km share the same location for point A in Meyrin area
 Point A for 100km is in

87km

93km (option 1a)

80km

General Positioning

- 80km, 87km & 93km share the same location for point A in Meyrin area
- Point A for 100km is in Prevessin area
- All options rotated clockwise as far as possible to minimise depth under lake

87km

93km (option 1a)

80km

General Positioning

- 80km, 87km & 93km share the same location for point A in Meyrin area
- Point A for 100km is in Prevessin area
- All options rotated clockwise as far as possible to minimise depth under lake
- Rotation limited by Jura (80km, 87km & 93km) or Vuache (100km)

87km

93km (option 1a)

80km

General Positioning

- 80km, 87km & 93km share the same location for point A in Meyrin area
- Point A for 100km is in Prevessin area
- All options rotated clockwise as far as possible to minimise depth under lake
- Rotation limited by Jura (80km, 87km & 93km) or Vuache (100km)
- Tunnel inclined about x-x & y-y to follow contours of the surface as much as possible

87km

93km (option 1a)

80km

General Positioning

- 80km, 87km & 93km share the same location for point A in Meyrin area
- Point A for 100km is in Prevessin area
- All options rotated clockwise as far as possible to minimise depth under lake
- Rotation limited by Jura (80km, 87km & 93km) or Vuache (100km)
- Tunnel inclined about x-x & y-y to follow contours of the surface as much as possible

87km

93km (option 1a)

Small alignment and shaft movements

Positioned so that:

- All surface sites are in potentially feasible locations i.e. avoid environmentally protected areas and the builtenvironment
- Shaft depths are minimised (F,G,H in particular)

Intersecting Option (100km)

Alignment Shafts Query	Alignment Location	Geology Int	ersected by Shafts	Shaft Depths	3	
		Shaft Depth	(m)	Geolo	gy (m)	
Choose alignment option		Point Actua	I Quaternary	Molasse	Urgonian	Calcaire
Turnel elevation of control 261m ASI		A				0
		в				
Grad. Params		c	57 58	199		
Azimuth (°): -20						
Slope Angle x-x(%): 0.65						
Slope Angle y-y(%): 0		E	32 64			
LOAD SAVE CALCULATE		F				
Alignment centre		G				
X: 2499731 Y: 1108403		н 2				
CP 1 CP 2		1				
Angle Depth Angle Depth		J				
LHC -64° 220m 64° 172m						
SPS 242m 241m		ĸ		169		
TI2 235m 241m		L 2				
T18 242m 170m		Total 3	211 501	2710	0	0
Alignment Profile						

86.59

- Avoids Jura limestone: No
- Max overburden: 650m
- Deepest shaft: 392m
- % of tunnel in limestone: **13.5%**
- Total shaft depths: 3211m

Challenges:

- 7.8km tunnelling through Jura limestone
- 300m-400m deep shafts and caverns in molasse

Non-intersecting Option (100km)

Alighment	Sharts Qt	Jeiy		Anynment Location
Choose alignmen	t option			+ 2 //
100km guasi-cire	cular 🔻			
Tunnel elevation	at centre:291mA	SL		
Č)	
Grad. Params				
	A	zimuth (°):	-17	
	Slope An	gle x-x(%):	0.48	
	Slope An	gle y-y(%):	0	
LOAD	SAVE		CALCULATE	
Alignment centre				
X: 2500583		Y: 1105	5970	
	CP 1		CP 2	
Angle	Depth	Angle	Depth	
LHC	122	n	122m	
SPS	187r	n	187m	
T12	187r	n	187m	

Geology Intersected by Shafts Shaft Depths						
Shaft Depth (m) Geology (m)						
oint	Actual	Quaternary	Molasse	Urgonian	Calcaire	
А						
в						
С						
D						
Е						
F						
G						
н						
I.						
J						
К						
L						
Total	3095	812	2282	0	0	

Alignment Profile

139r

T18

- Avoids Jura limestone: Yes
- Max overburden: 1350m
- Deepest shaft: 383m
- % of tunnel in limestone: 4.4%
- Total shaft depths: 3095m

Challenges:

- 1.35km tunnel overburden
- 300m-400m deep shafts and caverns in molasse

Back-end functionality

Tunnel Optimisation Tool ×			Person 1 📃 🗖	×
← → C 🗋 glogis04/cern_serve	er/index.php/admin		Q 🏠 🕵	⊐ ≡
	UP 🎡		* 🔺 1 💠 🛔	ΰ
System Administration	System Administration			
Admin Home	System Status			
Load New Alignment	Status: OK	Number of Alignments: 14	Number of Users: 6	
Alignment Configurations	Alignment Options			
Users	LOAD NEW ALIGNMENT VIEW AL	LL ALIGNMENTS		
	ID Name	Description	Date loaded	
	2 100km circular	null	2014-12-12	
	3 100km racetrack 2	null	2014-12-12	
	4 83km circular	null	2014-12-12	
	8 80km circular	null	2014-12-12	
	9 93km circular	null	2014-12-12	
	10 107km circular	null	2014-12-12	
	14 100km quasi-circular	null	2014-12-12	
	13 93km quasi-circular	null	2014-12-12	
	12 87km quasi-circular	null	2014-12-12	
	11 80km quasi-circular	null	2014-12-12	
	5 100km racetrack 1	null	2014-12-12	-

How to compare options? Applying Amberg Metrics

2. Each element of construction (1 meter of shaft, 1 meter of tunnel, 1 cavern) is multiplied by its respective **unit multiplication factor** which are dependent on the geological conditions and relative to the cost/risk of tunnelling 1m in molasse

Evenne	Tunnel	Geological conditions	Unit multiplication factors	Installation of TBM (52.85) or Dual mode TBM (70.46)	Mode change
example	tunnel	Moraine < 12 bar	1.38	52.85	26.42
	tunnel	Molasse	1.00		
(arbittrary	tunnel + injections	Molasse flowing water	1.53	70.46	
	tunnel	Urgonian	1.23		
	tunnel + injections	Urgonian flowing water	1.76	70.46	
allignment	tunnel	Calcaire	1.09		
	tunnel + injections	Calcaire flowing water	1.62	70.46	
	tunnel + injections	Calcaire & Karst	1.91		

Tunnel unit multiplication factors

Shaft unit multiplication factors

				Installation and ground freezing
shaft (d	conv.)	Geological conditions	Unit multiplication factor	125.00
shaft (conv.)		stiff clay < 50 m	3.66	
shaft (conv.)		sandy-silty < 50 m	6.60	
shaft (conv.) 1		soil with ground water < 50 m	8.64	
shaft (conv.)		Molasse	3.66	
shaft (conv.) +	 injections 	Molasse flowing water	4.54	70.46
shaft (conv.)		Urgonian	2.48	
shaft (conv.)	+ injections	Urgonian flowing water	3.36	70.46
shaft (conv.)		Calcaire	3.01	
shaft (conv.)	+ injections	Calcaire flowing water	3.89	70.46
shaft (conv.)	+ injections	Calcaire & Karst	4.38	

Cavern unit multiplication factors

Cavern type	Geological conditions	Unit multiplication factor
shaft bottom cavern 2 x 70 m / 200 m2	soil below GWL	17.72
shaft bottom cavern 2 x 70 m / 200 m2 1	soil above GWL stiff clay	9.23
shaft bottom cavern 2 x 70 m / 200 m2	Molasse	6.76
shaft bottom cavern 2 x 70 m / 200 m2 + injections	Molasse flowing water	7.64
shaft bottom cavern 2 x 70 m / 200 m2	Urgonian	5.11
shaft bottom cavern 2 x 70 m / 200 m2 + injections	Urgonian flowing water	5.99
shaft bottom cavern 2 x 70 m / 200 m2	Calcaire	5.75
shaft bottom cavern 2 x 70 m / 200 m2 + injections	Calcaire flowing water	6.63
shaft bottom cavern 2 x 70 m / 200 m2 + injections	Calcaire & Karst	7.12

How to compare options? Applying Amberg Metrics

1. This gives a total cost risk for the tunnelling, each shaft and each cavern and a grand total for the alignment

Amberg metrics include the cost/risk of:

Tunnels

- Tunnel Boring Machine (TBM) excavation in moraines, molasse, calcaire & urgonian with or without water pressure
- Installation of a typical TBM or 'dual mode' TBM

Shafts

 Construction of 12 shafts (conventional and mechanical) in moraines, molasse, calcaire & urgonian with or without water pressure

TBM Caverns

 Construction of 24 70mx200m² shaft bottom caverns for TBM assembly Not yet included:

- Connection to the LHC
- Feasibility of over ground site locations
- Environmental considerations (other than shafts avoiding protected areas)
- Risk of severe tunnel squeezing at depths up to 650m in molasse
- Experimental and service caverns
- Cost/risk for cavern construction at large depths
- Etc.

Latest results - Comparison between options of different circumference

Total FCC option cost/risk

FCC Option

Latest results - Comparison between options of different circumference

Total Amberg cost/risk adjusted for circumference

Lesson 1(a) : Software continues to progress - TOT evolves as the FCC study evolves

- Evolution of options, changing focus of study, changing assumptions
 - \rightarrow New data sets, increased data maturity, new functionalities within TOT

Importance for TOT-ILC: Consideration may need to be given to the future strategy, resources and budget for TOT-ILC development

Lesson 1(b): It is the user's responsibility to suggest TOT upgrades to ARUP based on their own experience and knowledge of the project requirements

• Developments to TOT-FCC sometimes on a month to month basis

 \rightarrow Phase 2 of TOT-FCC development is now planned for the upcoming year

Importance to TOT-ILC: The user (KEK) has the responsibility of both using TOT-ILC as a decision aiding tool and making recommendations to ARUP for future development of TOT-ILC

Lesson 2: Comparison between options – not everything can be compared like for like

- Early project stage, many variables (CE + physics demands), many unknowns (geology, future development etc.)
 - → Estimated what we can (Amberg metrics) but, some variables cannot be compared like for like without subjective weighting

Importance to TOT-ILC: Optimisation of shaft locations (shaft length vs. surface constraints)

Lesson 3: Communication of results has been one of the most useful applications of TOT

- Regular updates for interested groups at CERN and external engineering consultants. Also, external showcasing of the study (IPAC15 [USA], BTSYM [UK])
 - \rightarrow Graphics & data from TOT for every iteration
 - → For FCC, a great deal of positive outisde interest has been generated, thanks to TOT communication (press releases, conferences etc.)

Importance to TOT-ILC: The main purpose of TOT-ILC will be a decision aiding tool. However, a major benefit will also be for communication throughout the study

http://cerngis05/cern_server/index.php

www.cern.ch