ILC Tunnel compared with the longest Railway Tunnel experienced in Japan

Learning experience from the construction of the "Seikan Tunnel" under sea

Masanobu Miyahara

- High Energy Accelerator Research Organization /KEK
- Linear Collider Project Office

Contents

1. Overview of the Seikan-tunnel Project
 2. Technical Innovation of the Seikan Tunnel 3. Comparison of the ILC-tunnel \& Seikan-tunnel

Prologue

- Akira and I visited the Seikan tunnel 240 m under sea on July 7,2015.
- The main purpose:
- to study the Construction Technology of this unique tunnel.
- Research of the Management system after completion.

The cross-sectional area of the ILC tunnel is almost the same as the standard of JR Shinkansen tunnel.

Tunnel Length - Work Rankings

What we have learned from the construction of the Seikan Tunnel !

What we should learn from the project "Seikan-tunnel construction"

■ Longest \& Deep under sea Tunnel

- Total Tunnel Length: 54 km

- How to do the survey? Without GPS!
- How to do the Geological survey under sea?
- How to do the tunnel digging?

- Under the sea level : 250 m

- How to withstand Water Pressure?
- How to estimate the Cost \& Schedule?

Location of Seikan Tunnel

Shared construction of Shinkansen and the conventional line: 3 line tracks

News: 2014.12.07

The Shinkansen (Bullet train) exits the SEIKAN Tunnel.

This is a test run.
Will be openain spring next year.

Project：Seikan Tunnel

Tsugaru Strait

History of Seikan tunnel construction： 1964 Groundbreaking 1983 Completion of Pilot tunnel 1985 Completion of Main tunnel 1987 Total Completion

Functions of each Tunnel (Current condition)

Honshu side

- Inclined tunnel

- Access \& Installation

Maintenance machine \& materials

- Power Supply
- Air Ventilation
- Groundwater Drainage
- Passenger Evacuation

28th Jul.

Pilot \& Service tunnel

- Maintenance passage (Working Vehicle)
- Air Ventilation
- Groundwater Drainage
- Passenger Evacuation
- Main tunnel = Railway
- Existing line \& Freight line + Shinkansen line

Cross-Section Image

Seabed of Tsugaru Strait

Geological Structure

Geological feature constitution of the Seikan Tunnel

地 質 凡 例

洓綖層	
＂	泥岩•泥質颖夾岩
＂	
＂	泥岩•数厌岩•数圧質砂岩
＂	
褔山䜆	

A prior prediction of the geological feature constitution is successful

Geological Structure

■Investigation with various technologies

Survey by submarine

Dredging

Acoustic detection

28th Jul.

Seismic exploration

CFS-Mini Workshop at CERN, Geneva

Submerging boring

15

Construction Method

■Three major Innovations by Seikan-tunnel

1. Grouting (Watertight technology by pre-grouting)
2. Pilot Boring (Long scale horizontal boring before excavation)
3. Shotcrete (Lining technology by Concrete splaying)

Construction Method -Pilot Tunnel

■ The purpose of Pilot tunnel :

1. Exploration of geological structure (Fault \& Fractured zone)
2. Research of construction technology (Spring water measures)

3. Estimates of the total Construction cost \& schedule

ILC Tunnel compared with Seikan Tunnel

Common Points : mainly Civil Engineering

> Project Scale: Tunnel Length \& Cross-section
$>$ Tunneling Method: Mountain Tunneling Method (NATM)
> Alignment precision: Special Survey
> Maintenance after completion: Service life more than 50 years

Different Points : mainly Incident Facilities

> Tunnel Linearity: ILC tunnel needs strict linear geometry.
> Infrastructures \& Incidental Facilities for ILC:

- High Power Supply Cooling water system HVAC system
- Radiation Control Cryogenics system

fin ... Construction Process of NATM ...

 ... Construction Process of NATM ...}

Blast\& Drilling

Shotcrete

28th Jul.
Main Linac e-

Macking

ILC ML

Steel-supporting

Main Linac e+

Rock-bolt

Damping Ring
$\mathrm{AH}-1$ A 1
 CFS-Mini Marksichtuctrn, Geneva

\#\& \square Characteristics of the construction site

Seikan Tunnel

Comparison Topics

ILC TunneI

Geology - Granite (very hard)
Construction - NATM (Blasting)
Method (KAMABOKO-shape)
Depth - 40m~400m
Installation - Horizontal Tunnel
\& Access
Evacuation
Feature
Topography - Mountain

- Vertical shaft (Detector)
- Horizontal Tunnel

characteristic of the Tunnel

■ Comparison of ILC Tunnel and Railway Tunnel

Item	Railway Tunnel	ILC Tunnel
Cross Section		
Linearity	Flexible: Depending of Terrain	- Laser straight (BDS) - Parallel to Geoid (ML)
Slope Limit	Max; 0.3\%	Flat as possible
Air Condition	not necessary	Advanced HVAC systems
Ventilation	- Blower - Exhaust fan	Advanced Ventilation system

Seikan-tunnel judged by details

ILC Project by KEK-CFS

	Seikan	ILC
Main Tunnel Length	54 km	35 km
Other tunnels (Pilot \& service, \& Access tunnel,etc.)	80 km	10 km
Total excavation volume (m³)	6,300,000	3,500,000
Grouting (Cement \& Water glass)	850,000 m^{3}	?
Cement	850,000 ton	?
Construction Period	24 years	7 years
Number of the total workers	14,000,000	?
Total construction cost	$¥ 690$ billion	?
28th Jul. CFS-Mini Workshop		22

Summary

- We selected the potential site with the best geological conditions in ILC project.
So, expected no difficulties on the Seikan tunnel construction.

However,

- Tunneling work needs to prepare for unexpected conditions.
- Therefore we should often learn from experience of the Seikan Tunnel over much failure.

End

Appendix

Appendix

Unique train in JR: Doctor Yellow:

 for the Inspection of the Rail Track stability \& Contract wire

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Signal condition,	Contact wire \&	Electric Power	Track-relation	Electric Power	Contact wire \&	Signal condition,
Communication	Pantograph	monitoring	Inspection	monitoring	Pantograph	Operators Room

Track Measurement cart

28th Jul.

Doctor Yellow:

High-speed Test Train for Shinkansen (Bullet train)

O Rail track : @ 25 cm O Trolley line: @ 5 cm
nspection Density:

Rail and Contact Wire Inspection Technology

Inspection by Doctor Yellow:

O Whole Shinkasen line: Measuring by the Running Test every 10 days

	Rail track Inspection	Contact Wire Inspection
Measurement Item	(1) Track Gauge (2) Cross Level (3) Height (4) Flatness (5) Axial displacement	(1) Abrasion (2) Deviation (3) Height (4) Watching by Observation Dome
Measurement Interval	25 cm	5 cm

Height	4 mm
Flatness	3 mm
Axial Displace.	3 mm

CFS-Mini Workshop at CERN, Geneva

28th Jul.

Optical rail displacement detector

28

