ILC Curved Linac Simulation

Kirti Ranjan, Francois Ostiguy, Nikolay Solyak Fermilab

> + Peter Tenenbaum (PT) SLAC

Curved ILC-BCD LINAC

➢ PT's ILC BCD-like lattice distributed during ILC-LET workshop at CERN.

- A constant focusing lattice with a quadrupole spacing of 32 cavities and x/y phase advance of 75/60 per cell (ILC BCD - 1Q / 4CM)
- Modifications in LIAR code to simulate the earth curvature:
 - The curvature is simulated by adding kinks between the cryo-modules GKICK
 - The matched dispersion condition at the beginning of the linac is artificially introduced into the initial beam and is propagated through linac using transfer matrices

Length (m) : 10417.2m			
N_quad :	240		
N_cavity :	7680		
N_bpms :	241		
N_Xcor :	240		
N_Ycor :	241		
N_gkicks :	1920		

LIAR Simulation: CURVED LINAC

June 8, 2006, FNAL

Nominal Misalignment tolerances

Tolerance	Vertical (y) plane	
BPM Offset w.r.t. Cryomodule	300 μm	
Quad offset w.r.t. Cryomodule	300 μm	
Quad Rotation w.r.t. Cryomodule	300 µrad	
Cavity Offset w.r.t. Cryomodule	300 μm	
Cryostat Offset w.r.t. Survey Line	200 μm	
Cavity Pitch w.r.t. Cryomodule	300 µrad	
Cryostat Pitch w.r.t. Survey Line	20 µrad	
BPM Resolution	1.0 μm	

- → 1st 7 BPMs have 30 µm RMS offset w.r.t. Cryostat
- > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat
- Only Single bunch used
- Steering is performed using Dipole Correctors

Dispersion Free (or Matched) Steering

- > 1:1 steering is performed steer to obtain the nominal, design readings of the BPMs
 DFS -
- Linac is divided into 18 segments (w/ 50% overlap) & 1st DF segment starts from 8th BPM
- Measure two orbits
 - (i) y(0) : one for the nominal energy.

(ii) $y(\delta)$: other by switching off cavities upstream of the segment (maximum energy change for a given segment is 20% of the nominal energy at the upstream end of the segment, or 18 GeV, whichever is smaller.)

- In both cases 3 BPMs upstream of each segment (used for fitting the incoming beam trajectory) are included in the measurement.
- Simultaneously minimize the Measured dispersion and RMS value of BPM readings

 $\chi^{2} = \frac{\Delta \mathbf{y}(\delta) \cdot \Delta \mathbf{y}(\delta)}{\sigma_{res}^{2}} + \frac{\mathbf{y}(0) \cdot \mathbf{y}(0)}{\sigma_{BPM}^{2}} \qquad \qquad \sigma_{res} = \mathsf{sqrt}(2) * \mathsf{BPM resolution} \\ \sigma_{\mathsf{BPM}} = \mathsf{BPM offset}$

Where
$$\Delta y(\delta) = y(\delta) - y(0) - \Delta y_{nom}(\delta)$$

 $\Delta y_{nom}(\delta)$ is the nominal or design difference orbit for the momentum error δ .

June 8, 2006, FNAL

Dispersion Free Steering - Results

춖

Misalign the beamline components and perform the DF steering CURVED vs. STRAIGHT LINAC

June 8, 2006, FNAL

DFS: Sensitivity studies

ary one misalignment from its nominal value - keeping all other misalignments at their nominal value

June 8, 2006, FNAL

DFS: Sensitivity studies

Beam and Quad Jitter Sensitivity

Quad Strength error

Quad strength error (dK)	Mean	90%
0.5 e-3	7.43±0.46	11.7
1e-3	7.44±0.46	11.5
2.5e-3	7.50±0.46	11.5
5e-3	7.70±0.46	11.9

June 8, 2006, FNAL

DFS: Contributions

$\Lambda =$
_

50 seeds	mean	90%	
Nominal	5.26 ± 0.38	9.47	
Dispersion only	1.99 ± 0.24	4.22	Switch off wakes & quad roll
Wakes only	1.8 ± 0.17	3	Cavity offset & wakes only
Quad roll only	1.47 ± 0.13	2.83	quad roll only
Total	5.26	10.05	

Individual misalignment (30 seeds)	mean	err	90%
CM pitch only	0.25	0.036	0.56
Cavity pitch only	2	0.35	4.3
Front bpm offset only	0.41	0.0493	0.77
Quadroll only	1.39	0.13	2.37
Cavity offset only	1.67	0.18	2.98
Bpm resolution only	0.43	0.0548	0.76
Bpm offset only	0.2	0.0107	0.28
Quad offset only	0.17	0.0026	0.19
Sum	6.52		12.2

A systematic contribution

seems to add up in each case, which is added only once when we perform the nominal run

June 8, 2006, FNAL

PLAN

캮

- Use RTML to perform DF steering in launch region
- ➢ Failure mode analysis effect of failed BPM, YCOR on DF steering
- Use dispersion + wake bumps in curved linac
- > Perform the same in the Final Main Linac Lattice

Straight Linac; 30nm RMS (white noise) Quad vibration (no other error); 50 seeds

Ybpm_readings at the end of the linac vs. seed no.

Y_beam_size at the end of the linac= 2.5 e -6 m

June 8, 2006, FNAL