DFS(Dispersion Free Steering) in Curved(following Earth) ILC Main Linac

Kiyoshi Kubo 2006.June06

Lattice

- For Performance Study by P. Tenenbaum
 - one quad per four cryomodules
 - 75/65 degree phase advance per FODO cell

Curved Linac, 1-quad/4-cryomodules

BPM-Quad-Dipole package

Design orbit and dispersion

Emmitance without errors

Definition of

Projected emittance and Linear Dispersion Corrected emittance

Projected emittance

$$\equiv \sqrt{(- ^2)(- ^2) - (-)^2}$$

Linear Dispersion Corrected emittance

$$\equiv \sqrt{(<(y-\eta\delta)^2> - < y-\eta\delta>^2)(<(y'-\eta'\delta)^2> - < y'-\eta'\delta>^2) - (<(y-\eta\delta)(y'-\eta'\delta)> - < y-\eta\delta>< y'-\eta'\delta>)^2}$$

y: Vertical offset, y': Verticale angle

 δ : Relative energy deviation

$$\eta = (\langle y\delta \rangle - \langle y \rangle \langle \delta \rangle)/(\langle \delta^2 \rangle - \langle \delta \rangle^2), \quad \eta' = (\langle y'\delta \rangle - \langle y'\rangle \langle \delta \rangle)/(\langle \delta^2 \rangle - \langle \delta \rangle^2)$$

<>: Average over all macro - particles

Simulated Algorithm of DFS, mode 0

One-to-one orbit correction (BPM reading zeroed)

Divide linac into sections (can be overlapped) and in each section:

- (1) Measure orbit with nominal beam energy. $(y_{0,i}$ at i-th BPM)
- (2) Reduce initial beam energy and accelerating gradient in entire linac by a common factor δ (e.g. 10% or δ = -0.1).
- (3) For the second section or downstream, orbit adjusted at the two BPMs just before the section to make the position at the BPM

$$y_{\delta} = y_0 + \delta \eta$$

(y_0 is the position with nominal energy, η the dispersion at BPM.)

- (4) Measure orbit. ($y_{\delta,i}$ at i-th BPM)
- (5) Set dipole correctors in the section to minimize

$$w\Sigma(y_{\delta,i} - y_{0,i} - \delta\eta_i)^2 + \Sigma(y_{0,i} - y_{des,i})^2$$

 $(\eta_i$ is the dispersion, $y_{des,i}$ the designed orbit at i-th BPM. w is the weight factor, chosen as w=5000.).

- (6) Iterate from (1) to (5).
- (7) Go to next section.

Simulated Algorithm of DFS, mode 1

One-to-one orbit correction (BPM reading zeroed)

Divide linac into sections (can be overlapped) and in each section:

- (1) Measure orbit with nominal beam energy. $(y_{0,i}$ at i-th BPM)
- (2) Reduce initial beam energy and accelerating gradient from the linac entrance to the entrance of the section by a common factor δ (e.g. 10% or δ = -0.1).
- (3) For the second section or downstream, orbit adjusted at the two BPMs just before the section to make the position at the BPM

$$y_{\delta} = y_0 + \delta \eta$$

(y_0 is the position with nominal energy, η the dispersion at BPM.)

- (4) Measure orbit. $(y_{\delta,i}$ at i-th BPM)
- (5) Set dipole correctors in the section to minimize

$$w\Sigma(y_{\delta,i} - y_{0,i} - \Delta y_{cal,i})^2 + \Sigma(y_{0,i} - y_{cal,i})^2$$

 $(\Delta y_{cal,i})$ is the calculated orbit difference, $y_{cal,i}$ the calculated orbit, without errors, at I-th BPM. w is the weight factor, w=5000.).

- (6) Iterate from (1) to (5).
- (7) Go to next section.

Simulated Algorithm of DFS, mode 2

One-to-one orbit correction (BPM reading zeroed)

Divide linac into sections (can be overlapped) and in each section:

- (1) Measure orbit with nominal beam energy. $(y_{0,i}$ at i-th BPM)
- (2) Reduce initial beam energy and accelerating gradient from the linac entrance to the entrance of the section by a common factor δ (e.g. 10% or δ = -0.1).
- (3) (No upstream orbit adjustment)
- (4) Measure orbit. $(y_{\delta,i}$ at i-th BPM)
- (5) Set dipole correctors in the section to minimize

$$w\Sigma(y_{\delta,i} - y_{0,i} - \Delta y_{cal,i})^2 + \Sigma(y_{0,i} - y_{cal,i})^2$$

($\Delta y_{cal,i}$ is the calculated orbit difference, $y_{cal,i}$ the calculated orbit, without errors, at I-th BPM. w is the weight factor, w=5000.).

- (6) Iterate from (1) to (5).
- (7) Go to next section.

Example of beam orbit after DFS

Quad offset 0.3 mm, Cavity offset 0.5 mm, Quad-BPM offset 0.2 mm, Cavity tilt 0.5 mrad, BPM resolution 3 micron. (example of one particular seed.)

Sensitivity of final (linear dispersion corrected) emittance to various errors (Average of 25 random seeds. No other errors in each figure.)

Emittance vs. s

Quad offset 0.3 mm, Cavity offset 0.5 mm, Quad-BPM offset 0.2 mm, Cavity tilt 0.5 mrad, BPM resolution 3 micron. (Average of 100 random seeds.)

Mode 1 shows clear structure due to division into sections.

Summary and comments

- DFS (Dispersion Free Steering) is effective in slowly curved (following earth) linac.
- Three different algorithms of DFS were tested.
 - Result of mode 0 is most sensitive to cavity tilt error, as expected.
 - Averaged emittance of the three looked similar for the combined errors: Quad offset 0.3 mm, Cavity offset 0.5 mm, Quad-BPM offset 0.2 mm, Cavity tilt 0.5 mrad, BPM resolution 3 micron.
 - About 40% to 50% vertical emittance dilution. (w.r.t. 2E-8 m)
- The results seem to depend on how the linac is divided into sections. (not shown here)