

- >Laser characteristics
- From the source to the IP
- Focusing the laser light

Nicolas Delerue (Oxford), Chafik Driouichi (RHUL),
David Howell (Oxford), Axel Brachmann (SLAC), Stewart Boogert (UCL),
Gary Boorman (RHUL), Thorsten Kamps (BESSY),
Grahame Blair (RHUL),...

Laser characteristics

- The laser used will be provided by KEK
- Green (532nm) Nd:YAG Laser
- Custom made by Positive light for KEK
- Rep. rate: 6.25Hz
- 10mm beam diameter
- Pulses: 200-300ps, 300-600mJ => ~1-2 GW peak power
- More than enough power...
- ... but the laser is ~10m away from our interaction point

Laser light transport

- Laser light must be transported over 10-15 m from the laser hut to our interaction point.
- Power must be attenuated to avoid damaging the optics.
- Laser light transport and delivery system has been simulated under Zemax.

Laser Power

Laser Damage Threshold (LDT):

E = 300 - 600 mJoules Pulse length = 200 - 300 ps Beam diameter 2.R = 6 mm

Power density =
$$\frac{600 \text{ mJoules}}{\pi \cdot R^2}$$

= 2.1 Joules/cm²

Best Coating → 20 Joules/cm² @ 532 nm, 8 ns.

LDT (8 ns) = 2.1 Joules/cm² .
$$\left\{ \frac{8 \text{ ns}}{0.2 \text{ ns}} \right\}^{\frac{1}{2}}$$

 $\approx 13.3 \text{ Joules/cm}^2$

→ Safety factor is not enough!

Scanning range

Scanning is done with a Piezo driven Scanner:

PI S330: $\theta = \pm 2.5$ mrad, f=1 KHz,

good repeatability.

= e-beam size

N= number of sigma scans

Scanning range is: $\theta = Nx / f$

Example: $f = 60 \text{ mm } \& N = \pm 5$

σ (μm) 1 6 θ (mrad) 0.08 0.5

Scan angle over exaggerated

Laser transport layout

Focusing the laser light

- The laser beam has a diameter of several millimeters.
- We want a wire size of only a [few] micrometers
- The laser light must be focused by wide aperture lens.
- No commercial lens seems to suits our needs

=> Custom design

What laser spot size do we need?

• The smallest spot size does not give the best sensitivity.

• But small laser spot size allows us to probe smaller electron beams.

=> First goal 2 micrometers laser spot size

(1 micrometer may be tried later)

BDIR meeting June 2005

Mechanical constraints on the lens

- The lens must fit into
 the constraints dictated
 by the design of the
 vacuum seal and the
 vacuum vessel.
 [See David Howell's talk]
- For vacuum sealing the lens must include a thick optical flat as last element.

Required performances of the lens

- Goal: concentrate as much energy as possible in the smallest possible radius (gives the best performance).
- As the laser beam will be scanned across the lens, the size of the spot must remain constant over the scanning range.
- As the lens will be used with a high power laser, it must have no first order ghosts and as few second order ghosts as possible.
- To facilitate the alignment of the lens, aberrations must be kept as low as possible.
- Effect of a tilt of one element of the lens with respect to the others must be studied carefully

Lens design

- The lens design was initially done by an external consultant but we had to continue it ourselves.
- The mechanical and performance requirements have been entered into Zemax to optimize the design.
- Design based on a Doublet including an aspheric element for optimal performances.
- All optical elements are made of fused silica to sustain both high laser power and high radiation environment.

Lens layout

LAYOUT

LASER WIRE. SILICA DOUBLET 1 ASPHERE NICOLAS DELERUE/RICHARD BINGHAM

FRI JUN 17 2005 SCALE: 2.5000

8,00 MILLIMETERS

20050615_2MICROMETRES_NO1GHOST.ZMX CONFIGURATION 1 OF

Lens parameters

Surf: Type		Comment	Radius	Thickness	Glass	Semi-Diameter	Conic
OBJ	Standard		Infinity	Infinity		Infinity	0.000000
STO	Standard		Infinity	17.000000		14.108400	0.000000
2	Even Asphere		117.126106 V	7.093310 V	SILICA	15.621904	-14.455280 V
3	Standard		-250.070725 V	1.987140 V		15.419735	0.000000
4	Standard		33.118324 V	5.309160 V	SILICA	14.999603	0.000000
5	Standard		274.998672 V	17.985135 V		14.444873	0.000000
6	Standard		Infinity	12.700000	SILICA	9.483961	0.000000
7	Standard		Infinity	24.075710 V		7.084259	0.000000
IMA	Standard		Infinity	700	11	0.297253	0.000000

2nd Order Term	4th	4th Order Term		Order Term	8th Order Term	
			88			
0.000000	2.	1604868-007	v -7.	467086E-010	0.000000	
		3	99 00	8	5 23	

Nicolas Delerue, University of Oxford http://www-pnp.physics.ox.ac.uk/~delerue/

BDIR meeting June 2005

Ghost

This design has only 1 second order ghost (weakly focused)

Conclusion

- A proper handling of the laser beam is critical to achieve good laser-wire performances.
- The laser transport system has been designed and will be tested soon.
- The focusing lens is still under study but should be ordered soon.
- We hope to install everything at the ATF in September