The Birth of the GDE

Barry Barish TESLA Collab Mtg 31-March-05

The Birth of the GDE

Barry Barish TESLA Collab Mtg 31-March-05

The Linear Collider

2001: The Snowmass Workshop participants produced the statement recommending construction of a Linear Collider to overlap LHC running.

2001: HEPAP, ECFA, ACFA all issued reports endorsing the LC as the next major world project, to be international from the start

2002: The Consultative Group on High-Energy Physics of the OECD Global Science Forum executive summary stated as the first of its Principal Conclusions:

"The Consultative Group concurs with the world-wide consensus of the scientific community that a high-energy electron-positron collider is the next facility on the Road Map.

"There should be a significant period of concurrent running of the LHC and the LC, requiring the LC to start operating before 2015. Given the long lead times for decision-making and for construction, consultations among interested countries should begin at a suitably-chosen time in the near future."

"Consensus Document"

April 2003: signed now by ~2700 physicists worldwide.:

Understanding Matter, Energy, Space and Time: The Case for the Linear Collider

A summary of the scientific case for the e+ e- Linear Collider, representing a broad consensus of the particle physics community.

http://sbhepnt.physics.sunysb.edu/~grannis/ilcsc/lc_consensus.pdf) (To join this list, go to http://blueox.uoregon.edu/~lc/wwstudy/

Why a Linear Collider?

- Two parallel developments over the past few years (the science & the technology)
 - The precision information from LEP and other data have pointed to a low mass Higgs; Understanding electroweak symmetry breaking, whether supersymmetry or an alternative, will require precision measurements.
 - There are strong arguments for the complementarity between a ~0.5-1.0 TeV LC and the LHC science.
 - Designs and technology demonstrations have matured on two technical approaches for an e⁺e⁻ collider that are well matched to our present understanding of the physics. (We note that a Cband option could have been adequate for a 500 GeV machine, if NLC/GLC and TESLA were not deemed mature designs).

Electroweak Precision Measurements

LEP results strongly point to a low mass Higgs and an energy scale for new physics < 1TeV

Why a Linear Collider?

- Two parallel developments over the past few years (the science & the technology)
 - The precision information from LEP and other data have pointed to a low mass Higgs; Understanding electroweak symmetry breaking, whether supersymmetry or an alternative, will require precision measurements.
 - There are strong arguments for the complementarity between a ~0.5-1.0 TeV LC and the LHC science.
 - Designs and technology demonstrations have matured on two technical approaches for an e⁺e⁻ collider that are well matched to our present understanding of the physics. (We note that a Cband option could have been adequate for a 500 GeV machine, if NLC/GLC and TESLA were not deemed mature designs).

LHC/LC Complementarity

The 500 GeV Linear Collider Spin Measurement

LHC should discover the Higgs

The linear collider will measure the spin of any Higgs it can produce.

The process $e^+e^- \rightarrow HZ$ can be used to measure the spin of a 120 GeV Higgs particle. The error bars are based on 20 fb⁻¹ of luminosity at each point.

The Higgs must have spin zero

LHC/LC Complementarity

New space-time dimensions can be mapped by studying the emission of gravitons into the extra dimensions, together with a photon or jets emitted into the normal dimensions.

Extra Dimensions

Convergence of Science and Technology

- Two parallel developments over the past few years (the science & the technology)
 - The precision information from LEP and other data have pointed to a low mass Higgs; Understanding electroweak symmetry breaking, whether supersymmetry or an alternative, will require precision measurements.
 - There are strong arguments for the complementarity between a ~0.5-1.0 TeV LC and the LHC science.
 - Designs and technology demonstrations have matured on two technical approaches for an e⁺e⁻ collider that are well matched to our present understanding of the physics. (We note that a Cband option could have been adequate for a 500 GeV machine, if NLC/GLC and TESLA were not deemed mature designs).

Parameters for the Linear Collider September 30, 2003

Parameters for the Linear Collider

Baseline machine

- > E_{cm} continuously adjustable from 200 500 GeV
- > Luminosity and reliability to allow $\int Ldt = 500 \text{ fb}^{-1}$ in 4 years following the initial year of commissioning
- > Ability to scan at any energy between 200 and 500 GeV; downtime to set up not to exceed 10% of actual data-taking time
- > Energy stability and precision below 0.1%; machine interface must allow energy, differential luminosity spectrum with that precision
- Electron polarization of at least 80%
- \triangleright 2 intersection regions for experiments; one with crossing angle to enable $\gamma\gamma$ collisions
- > Allow calibration at the Z, but with lower luminosity and emittance

ICFA/ILCSC Evaluation of the Technologies

International Linear Collider
Technical Review Committee

Second Report 2003

The Report Validates the Readiness of L-band and X-band Concepts

Technical Review Committee

In Feb. 2001, ICFA charged a Technology Review Committee, chaired by Greg Loew of SLAC to review the critical R&D readiness issues.

The TRC report in 2003 gave a series of R&D issues for L-band (superconducting rf TESLA), X-band (NLC and GLC), C-band and CLIC. The most important were the R1's: those issues needing resolution for design feasibility.

International Technology Recommendation Panel Meeting August 11 ~ 13, 2004. Republic of Korea

TRC R1 Issues

<u>L-Band</u>: Feasibility for 500 GeV operation had been demonstrated, but 800 GeV with gradient of 35 MV/m requires a full cryomodule (9 or 12 cavities) and shown to have acceptable quench and breakdown rates with acceptable dark currents.

X-band: Demonstrate low group velocity accelerating structures with acceptable gradient, breakdown and trip rates, tuning manifolds and input couplers. Demonstrate the modulator, klystron, SLED-II pulse compressors at the full power required.

R1 issues pretty much satisfied by mid-2004

ITRP Schedule of Events

Six Meetings

- RAL (Jan 27,28 2004)

 \longrightarrow

Tutorial & Planning

DESY (April 5,6 2004)

- SLAC (April 26,27 2004)

Site Visits

- KEK (May 25,26 2004)

Caltech (June 28,29,30 2004)

Deliberations

Korea (August 11,12,13)

Recommendation

- ILCSC / ICFA (Aug 19)

Exec. Summary Final Report

The Charge to the International Technology Recommendation Panel

General Considerations

The International Technology Pecommendation Panel (the Panel) should recommend a Linear Collider (LC) technology to the International Linear Collider Steering Committee (ILCSC).

On the assumption that a linear collider construction commences before 2010 and given the assessment by the ITRC that both TESLA and ILC-Y/NLC have rather mature conceptual designs, the choice should be between these two designs. In necessary, a solution incorporating C-band recnnology should be evaluated.

Note -- We interpreted our charge as being to recommend a technology, rather than choose a design

Our Process

- We studied and evaluated a large amount of available materials
- We made site visits to DESY, KEK and SLAC to listen to presentations on the competing technologies and to see the test facilities first-hand.
- We have also heard presentations on both C-band and CLIC technologies
- We interacted with the community at LC workshops, individually and through various communications we received
- We developed a set of evaluation criteria (a matrix) and had each proponent answer a related set of questions to facilitate our evaluations.
- We assigned lots of internal homework to help guide our discussions and evaluations

What that Entailed

- We each traveled at least 75,000 miles
- We read approximately 3000 pages
- We had constant interactions with the community and with each other
- We gave up a good part of our "normal day jobs" for six months
- We had almost 100% attendance by all members at all meetings
- We worked incredibly hard to "turn over every rock" we could find.

from Norbert Holtkamp

Evaluating the Criteria Matrix

- We analyzed the technology choice through studying a matrix having six general categories with specific items under each:
 - the scope and parameters specified by the ILCSC;
 - technical issues;
 - cost issues;
 - schedule issues;
 - physics operation issues;
 - and more general considerations that reflect the impact of the LC on science, technology and society
- We evaluated each of these categories with the help of answers to our "questions to the proponents," internal assignments and reviews, plus our own discussions

The Recommendation

 We recommend that the linear collider be based on superconducting rf technology

- This recommendation is made with the understanding that we are recommending a technology, not a design. We expect the final design to be developed by a team drawn from the combined warm and cold linear collider communities, taking full advantage of the experience and expertise of both (from the Executive Summary).
- The superconducting technology has several very nice features for application to a linear collider. They follow in part from the low rf frequency.

What Comes Next?

➤ILCSC initiated a Global Design Effort (GDE)

The plan they put forward:

- A Central Team located at a National Laboratory Site, with Director, Chief Accelerator Scientist, Chief Engineer and staff initially of 10-15.
- o Three regional teams sited in Asia, Europe and North America as determined by the regions. Each to have a Regional Director who join with the Central Team Director, Accel. Scientist and Engineer to form an overall directorate.
- o Central Team to direct the work and design choices.
- Actual design of subsystems to be done in the Regional Teams

TESLA Concept

 The main linacs are based on 1.3 GHz superconducting technology operating at 2 K.
 The cryoplant, of a size comparable to that of the LHC, consists of seven subsystems strung along the machines every 5 km.

TESLA Cavity

FIGURE 3. The 9-cell niobium cavity for TESLA

- RF accelerator structures consist of close to 21,000 9-cell niobium cavities operating at gradients of 23.8 MV/m (unloaded as well as beam loaded) for 500 GeV c.m. operation.
- The rf pulse length is 1370 μ s and the repetition rate is 5 Hz. At a later stage, the machine energy may be upgraded to 800 GeV c.m. by raising the gradient to 35 MV/m.

TESLA Single Tunnel Layout

 The TESLA cavities are supplied with rf power in groups of 36 by 572 10 MW klystrons and modulators.

FIGURE 2. Sketch of the 5 m diameter TESLA linac tunnel

Experimental Test Facility - KEK

- Prototype Damping Ring for X-band Linear Collider
- Development of Beam Instrumentation and Control

ATF	GLC/NLC-DR	
1.28 (1.54 max	k) 1.98	GeV
~ 10 ¹⁰	0.75 10 ¹⁰	e-/bunch
2.8	1.4	ns
20	192	/pulse
~4	3	μ m.rad
~0.015	0.02	μ m.rad

 N_e

Evaluation: Technical Issues

Final Focus Test Beam

Collaboration

BINP (Novosibirsk)

DESY

Fermilab

IBM

Kawasaki

KEK

LAL (Orsay)

MPI(Munich)

Rochester

SLAC

TESLA Test Facility Linac

Electro-polishing

(Improve surface quality -- pioneering work done at KEK)

- BCP EP
- Several single cell cavities at g > 40 MV/m
- 4 nine-cell cavities at ~35 MV/m, one at 40 MV/m
- Theoretical Limit 50 MV/m

New Cavity Shape for Higher Gradient?

- A new cavity shape with a small Hp/Eacc ratio around 35Oe/(MV/m) must be designed.
 - Hp is a surface peak magnetic field and Eacc is the electric field gradient on the beam axis.
 - For such a low field ratio, the volume occupied by magnetic field in the cell must be increased and the magnetic density must be reduced.
 - This generally means a smaller bore radius.
 - There are trade-offs (eg. Electropolishing, weak cell-to-cell coupling, etc)

TESLA Cost estimate500GeV LC, one e+e- IP

3,136 M€ ~7000 person years (no contingency, year 2000) Power Water & Cryogenic Plants e+ Beam Transport e- Damping Ring e+ Source PreLinac e+ Damping Ring e- Sources ©e+ Beam deliverv e- Beam delivery e+ Main LINAC DESY site Westerhorn e- Beam Transport XFEI TESLA machine schematic view e- Switchyard XFEL 1131 HEP & XFEL **Experiments** Machine cost distribution 587 546 336 241 215 124 101 97 Main LINAC Main LINAC Civil Machine X FFI **Damping Auxiliary HEP Beam** Injection Rings Infrastructure Incrementals **Systems** System Modules RF System Engineering Delivery

Statement of Funding Agency (FALC) Mtg 17-Sept-04 @ CERN

Attendees: Son (Korea); Yamauchi (Japan); Koepke (Germany); Aymar (CERN); Iarocci (CERN Council); Ogawa (Japan); Kim (Korea); Turner (NSF - US); Trischuk (Canada); Halliday (PPARC); Staffin (DoE - US); Gurtu (India)

Guests: Barish (ITRP); Witherell (Fermilab Director,)

"The Funding Agencies praise the clear choice by ICFA. This recommendation will lead to focusing of the global R&D effort for the linear collider and the Funding Agencies look forward to assisting in this process.

The Funding Agencies see this recommendation to use superconducting rf technology as a critical step in moving forward to the design of a linear collider."

FALC is setting up a working group to keep a close liaison with the Global Design Initiative with regard to funding resources.

The cooperative engagement of the Funding Agencies on organization, technology choice, timetable is a very strong signal and encouragement.

Fall 2002: ICFA created the International Linear Collider Steering Committee (ILCSC) to guide the process for building a Linear Collider. Asia, Europe and North America each formed their own regional Steering Groups (Jonathan Dorfan chairs the North America steering group).

GDE – The first step

- Define first baseline configuration (end of 2005)
- CDR (end of 2006)

How to get from here to there??????

Test facilities
Costs
R&D program

Conclusion

Remarkable progress in the past two years toward realizing an international linear collider:

important R&D on accelerator systems definition of parameters for physics choice of technology start the global design effort funding agencies are engaged

* Many major hurdles remain before the ILC becomes a reality (funding, site, international organization, detailed design, ...), but there is increasing momentum toward the ultimate goal --- An International Linear Collider.