TESLA-Technology-Collaboration-Meeting 30 – April 1

WG3: Auxillaries & Module Integration

Conveners: Helen Edwards (FNAL), Terry Garvey (LAL ORSAY), Bernd Petersen (DESY)

Outline

- Assessment of existing designs/prototypes
- Identification of critical reliability issues
- Existing and planned infrastructures
- Cryomodule integration issues (and impact on design)
- WG3- preliminary schedule

Assessment of existing designs/prototypes

- Status TTF cryomodules
- Design changes for XFEL-cryomodules
- Design changes for the ILC
- Schedule for next TTFmodules/XFELprototypes
- Industrialization of XFELcryomodules
- Access to documentation via EDMS
- Safety code issues

Main features of XFEL-cryomodule design (TESLA/TTF –type III)

Cavity chain is fixed to an invar rod – couplers keep position

TTF-cryomodule design: results, static heat loads

-> Measured static heat loads in line with the estimated theoretical values

Name/Type	-	Module 40/80 K [W]			4.3K [W]		2 K [W]			Notes
	Design	Estim.	Meas.	Design	Estim.	Meas.	Design	Estim.	Meas.	
		1								
Module 1 I	115.0	76.8	90.0 *	21.0	13,9	23.0 *	4,2	2,8	6,0 *	Open holes in isolation
Modul1 rep. l	115.0	76.8	81,5	21.0	13,9	15,9	4,2	2,8	5,0	2 end-caps
Modul 2 II	115.0	76.8	77,9	21.0	13,9	13.0	4,2	2,8	4,0	2 end-caps
Module 3 II	115.0	76.8	72.0 **	21.0	13,9	48.0 *	4,2	2,8	5,0	Iso-vac 1E-04 mb, 2e-ca
Module 1* II	115.0	76.8	73.0	21.0	13,9	13.0	4,2	2,8	<3.5	1 end-cap
Module 4 III	115.0	76.8	74	21.0	13,9	13.5	4,2	2,8	<3.5	1 end-cap
Module 5 III	115.0	76.8	74	21.0	13,9	13.0	4,2	2,8	<3.5	1 end-cap
Module SS	115.0	~76.8	72.0	~21.0	~13.9	12.0	-4.2	>2,8	4,5	Special, 2 end-caps
Module 3* II	115.0	76.8	75	21.0	13,9	14	4,2	2,8	<3.5	1 end-cap
Module 2* II	115.0	76.8	74	21.0	13,9	14,5	4,2	2,8	<4,5	2 end-caps
Module 6 EP	Type III, E	EP-Cavitie	s Goal:S	olution cl	ose to XF	EL Modul	es			(Assembly End-04??)

TTF-cryomodule design results: dynamic losses

2K Dynamic heat losses of module 4 & 5 (type III) : about 3 W at 25 MV/m each

X-FEL Cryomodule

- TTF type III design baseline for X-FEL
- 8 cavities, 1 magnet package

Modifications:

- smaller quadrupole (super-ferric), 2K cooled,typelll support
- metal gaskets and/or welded connections (under discussion)
- different BPM
- length shall match the (lambda * N/2) condition
- ceramic HOM absorber between modules
- Piezo tuner
- Review: larger diameters helium process tubes ?
- Safe-guard design
- Still open question: design changes needed to reduce vibrations ????
- industrialization

Design modification considerations for ILC

- Cavity length- beam tubes same both ends ~ -3cm
- Tuner type- blade or Saclay type II, with integrated piezo tuner
- Quad- BPM package and power leads- needs to be packaged for clean room assembly- consider HTC leads- TESLA assembly must fit in module length
- Quad location for maximum stability of BPM and minimum Quad vibration- below center post
- Review end pipe cryo connections- efficient use of space.
- HOM absorber

Identification of critical reliability issues

- Tuner design, engineering, operation
- Analysis of vibration issues
- Impact from quad yoke saturation on steering coils
- Coupler processing
- Transportation of modules
- Started: Analysis of assembly protocols
- Summarize critical paths, reliability, critical developments, and test issues

Identification of critical reliability issues (cont.)

- Tuner stepping motor inaccessible
- Piezos redundant (probably ok)
- Many vacuum flanges
- Alignment and thermal cycle stability
- Cavity contamination by rupture
- Deterioration of gradient or Coupler (reprocessing?)

 Planned: SMTF at FNAL, KEK test facility, single
 Cryomodule Module Test
 Bench at DESY

 XFEL-Accelerator-Cryomodule testhall at DESY

Existing and planned infrastructures

SMTF schedule?

SMTF test program ?

KEK test facility schedule?

KEK test facility test program?

Prototype test program CMTB (DESY)

- In general: cryomodule tests independent from linac operation
- RF cavity processing / performance
- processing of RF couplers
- cryogenic performance
- tests of vacuum systems
- tests after repairs before installation into linac
- tests of new design features (2K quad ...etc.)
- dark current
- stretched wire, WPMs
- thermal cycling
- operation at different HE II bath temperatures
- insulation vacuum / beam vacuum venting
- ...etc......

Existing and planned infrastructures

Test program and schedules for serial production of XFEL- cryomodules?

Test program and schedules for serial production of ILC- cryomodules?

XFEL Test Hall Layout

Cryomodule integration issues (and impact on design)

- Magnet package
- Tuners
- Couplers
- BPM design
- HOM absorber
- Module instrumentation
- Impact of automated welding procedures

TESLA Quad Magnet Package

TESLA-Magnet from Ciemat tested in February at DESY

XFEL magnet package

- Super ferric design
- Field simulations finished
- Mechanical design started
- About a factor of 2 shorter than TTF design
- Steering coils
 - Fit in quad aperture
 - investigation for lower current solution (smaller power supplies)
- TTF magnet package also

side

Tuners & Piezos

TTF Power Couplers

TTF 3

LAL Disk Design 60 mm

TTF 4 80mm - 2 prototypes tested

Topics & Schedule Organization I

- I Wed 15:30
- Organization- review topics, agenda, and see who wants to make presentations
- Overview of Modules
- Status and plans for TTF and XFEL
- Some Summaries of other meetings-
 - Possible direction for ILC module
 - Perceived reliability issues, other issues & non issues

Topics & Schedule Organization II & III Thurs 9:00- 10:30

- Input couplers
- Tuners- mechanical & piezo

III Thurs 11:00- 12:30

- Alignment, vib and BPM specifications
- Quad packages and vibration measurements
- Module layouts,- z real-estate, interconnect realestate
- Manufacturability, assembly, and test of modules

Topics & Schedule Organization IV

IV Thurs 14:00- 16:00

- Drawings, specifications, EDMS, critical information, Safety codes, Property rights, formats and standardization
- Module instrumentation, BPM, HOM-abs
- Module assembly and Test facility plans
- Critical R&D tests and goals
- Summarize critical paths, reliability, critical developments, and test issues. (e.g. How can we go faster?)

SUMMARY

WG3: Auxillaries & Module Integration

- Assessment of existing designs/prototypes
- Identification of critical reliability issues
- Existing and planned infrastructures
- Cryomodule integration issues (and impact on design)