ILC Availability Simulation

(Status Report)

Eckhard Elsen and Sebastian Schätzel

DESY

ILC Meeting 3 June 2005

History and Outline

US Linear Collider Technology Options Study (4 March '04)

- Availability computer program (Tom Himel, SLAC) http://www.slac.stanford.edu/~tmh/availability/
 - calculate downtime of LC based on failure probabilities of components
 - quantitative comparison of LC designs

Today:

- Basics of failure probabilities
- Tom Himel's program
- Conventional vs. undulator positron source

Availability

Here: fraction of time when accelerator provides "useful luminosity"

Availability engineering

- ensure performance of devices
- identify critical parts of a machine
- how to build a complex factory?

Bath-tub curve

simulation assumes stable accelerator operation

Failure Probabilities

N devices, constant failure rate λ

$$\frac{dN}{dt} = -\lambda N \quad \longrightarrow \quad N(t) = N_0 e^{-\lambda t}$$

Probability of failure until t:

$$P_{\text{fail}}(t) \equiv \frac{\text{\# broken devices}(t)}{\text{\# all devices}} = 1 - e^{-\lambda t}$$

mean time between failures

$$T \equiv \int_0^\infty dt \ t \frac{dP_{\text{fail}}}{dt} = \frac{1}{\lambda}$$

Generation of next failure time

- 1. random number between 0 and 1
- 2. convert into next failure time using $P_{fail}(t)$

Generated Failure Times

Program Input and Output

Input MTBF for all components

component name	subsys/s egment	region	problem name	parameter quantity affected		degra dation	MTRE	aco MTTR nee		n repair
cryo plant	beamline	sitewide	broken	1 luminosity	mult	0			1 Debe	4
VacP power supply	beamline	e+ DR	broken	2048 luminosity	mult	1.00	1.0E+05	1	1	1
•••										

Output downtime table

% time down incl forced MD	15.2
% time fully up integrating lum or sched MI	84.8
% time integrating lum	74
% time scheduled MD	10.8
% time actual opportunistic MD	1.2
% time useless down	14
number of accesses per month	3.93

Program Setup

MATLAB running on Solaris computer (Thanks to MVP!)

MATLAB program structure

```
read input
determine 1<sup>st</sup> failure time for every component
time = min(failure times)
time loop {
   case (event) in {
       - failure
                machine down?,
                schedule for repair,
                determine next failure time, ...
       repair finished
                machine up?, ...
   time = time of next event
write output
```

Definition of Downtime

time when machine parameters below minimum values

"no useful luminosity"

Parameter	design value	minimum value
luminosity	1.00E+034	5.00E+033
e- energy overhead	20000	0
e+ energy overhead	20000	0
e- DR RF HV	54	49.5
e+ DR RF HV	54	49.5
e- DR inj kick	0.63	0.6
e- DR ext kick	0.63	0.6
e+ DR inj kick	0.63	0.6
e+ DR ext kick	0.63	0.6

component failures decrease parameters

component name	subsys/s egment	region	problem name	quantity	parameter		degra dation	MTRE			n repair people
•	•	•									beobie
cryo plant	beamline	sitewide	broken	7	luminosity	mult	0	1.00E+03	10	U	, 2
VacP power supply	beamline	e+ DR	broken	2048	luminosity	mult	1.00	1.0E+05	1	1	•
quad or corr	beamline	e+ DR	retuned	2049	luminosity	mult	0.99	1.0E+50	2		4
Wigglers	beamline	e+ DR	broken	90	luminosity	mult	0.00	1.0E+07	8		-
Kickers - injection	beamline	e+ DR	broken	21	e+ DR inj kick	add	-0.03	1.0E+05	8		-

Example Simulation

- vacuum pump breaks at 0.5 hours, no degradation
- cryo plant breaks at 3h, Lumi=0, machine down
- pump repaired at 5h, plant at 13h
- long recovery (23h)

Recovery procedure

sequential tuning

undulator positron source

	name sitewide	upstream	access hours	recovery hours	tune-time fraction
	Sitewide	none	0	0	0
	e- injector	sitewide	1	1	0.1
	e- DR	e- injector	1	1	0.2
e⁻ arm	e- compressor	e- DR	1	1	0.1
C aiiii	e- linac	e- compressor	1	1	0.1
	e- BDS	e- linac	1	1	0.1
	e+ source	e- linac	1	1	0.1
	e+ PDR	e+ PDR	1	1	0.2
e⁺ arm	e+ DR	e+ source	1	1	0.2
C C (1111	e+ compresso	re+ DR	1	1	0.1
	e+ linac	e+ compresso	1	1	0.1
	e+ BDS	e+ linac	1	1	0.1
IP region	IP	e+ BDS	1	1	0.2

tunetime = tunetime fraction * total downtime (includes tunetime of upstream regions)

More Examples

repair during running (hot fix)

many repairs

Undulator Positron Source

- need e⁻ beam to produce e⁺ beam
- + low neutron production rate (thin target)
- + no pre-damping ring needed
- + polarised e⁺

Conventional Positron Source

- + e⁺ beam independent of e⁻ beam
- target at stress limit
- large neutron rates (thick target), radiation damage
- pre-damping ring needed
- unpolarised e⁺

Undulator/conv. e⁺ sources in US study

"The fact that an undulator positron source requires well tuned high energy electrons before positrons can be produced significantly reduces the integrated luminosity of a LC."

Downtime	conventional	undulator
US study	11.8%	15.5%

- due to dependence on e beam
 - sequential tuning procedure; tunetime proportional to downtime
 - machine development in 2 accelerator regions simultaneously for conv. source

Where US study can be improved

- not implemented:
 - e driver linac (conv.)
 - pre-damping ring (conv.)
 - auxiliary source (undulator)
- same MTBF should be smaller for conv. (stress limit, radiation damage)

All points in favour of conv. source

Extension of conv. source simulation

e⁻ driver linac (6 GeV)

approximated using 5 GeV e⁻ injector

Downtime	conv.	undulator
US study	11.8%	15.5%

+ driver 13.0%

pre-Damping ring

as modelled by Tom for "warm" LC options

+ pre-DR 14.7%

MTBF of conventional source

assume 75% of undulator MTBF

+ 75% MTBF	15.0%	

Add auxiliary source for undulator option

- provides low intensity e+ beam
- used for tuning of e⁺ arm (+machine development)

We assume: tune-time fraction in e⁺ arm reduced to 50% (75%)

Results

Downtime	conventional	undulator
US study	11.8%	15.5%
+ driver	13.0%	
+ pre-DR	14.7%	
+ 75% MTBF	15.0%	
+ aux. (75%)		14.1%
+ aux. (50%)		13.0%

Conclusions:

similar downtimes aux. source important

Benchmarking: HERA

compare simulation with existing machine

started by Michiko Minty

need list of components and MTBFs

storage ring: adapt code?

Summary

- working setup of Tom's program
- undulator vs. conventional positron source:
 - more realistic simulation of conv. source
 - added auxiliary source for undulator option
 - both options give similar downtimes

Next Steps

- HERA
- commissioning phase
- recovery procedure
- machine development