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History and Outline
US Linear Collider Technology Options Study (4 March '04)

—» Availability computer program (Tom Himel, SLAC)
http:/ /www.slac.stanford.edu/~tmh/availability/

* calculate downtime of LC based on failure probabilities
of components

* quantitative comparison of LC designs

Today:

e Basics of failure probabilities
* Tom Himel's program

* Conventional vs. undulator positron source
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Availability

Here: fraction of time when accelerator provides “useful luminosity”

Availability engineering

* ensure performance of devices
* identify critical parts of a machine
* how to build a complex factory?
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simulation assumes stable accelerator operation
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Failure Probabilities

N devices, constant failure rate A

dN
— = —AN —> N(t) = Nge
dt
Probability of failure until t:
Praa(t) = # broken devices(t) Y

# all devices

mean time between failures

> APy 1
T = dt t = —
/0 d A
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Generation of next failure time

. random number between 0 and 1

2. convert into next failure time using P_ (1)

Probability of failure until
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Program Input and Output

Input MTBF for all components

subsys/s problem parameter add/ degra access h repair
component name egment region name quantity affected mult dation MTBF MTTR needed people
cryo plant beamline sitewide broken 1 luminosity mult 0 1.00E+03 10 0 4

VacP power supply beamline e+ DR broken 2048 luminosity muilt 1.00 1.0E+05 1 1 1

Output downtime table

% time down incl forced MD 15.2
% time fully up integrating lum or sched ML 84.8
% time integrating lum 74
% time scheduled MD 10.8
% time actual opportunistic MD 1.2
% time useless down 14
number of accesses per month 3.93
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Program Setup

Spreadsheet ASCII MATLAB
files

MTBF list >

Simulation

Results table =

MATLAB running on Solaris computer (Thanks to MVP!)
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MATLAB program structure

read input
determine 1* failure time for every component

time = min(failure times)

time loop {
case (event) in {
- failure

machine down?,
schedule for repair,
determine next failure time, ...

- repair finished
machine up?, ...

}

time = time of next event

§

write output
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Definition of Downtime

time when machine parameters below minimum values
“no useful luminosity”

Parameter design value minimum value

luminosity 1.00E+034 5.00E+033

e- energy overhead 20000 0

e+ energy overhead 20000 0

e- DR RF HV 54 49.5

e+ DR RF HV 54 49.5

e- DR inj kick 0.63 0.6

e- DR ext kick 0.63 0.6

e+ DR inj kick 0.63 0.6

e+ DR ext kick 0.63 0.6
component failures decrease parameters

subsys/s problem parameter add/ degra access nrepair

component name egment region name quantity affected mult dation MTBF MTTR needed people
cryo plant beamline sitewide broken 1 luminosity mult 0 1.00E+03 10 4
VacP power supply beamline e+ DR broken 2048 luminosity mult 1.00 1.0E+05 1 1 1
quad or corr beamline e+ DR retuned 2049 luminosity mult 0.99 1.0E+50 2 1
Wigglers beamline e+ DR broken 90 luminosity mult 0.00 1.0E+07 8 1
Kickers - injection ~ beamline e+ DR broken 21 e+ DR inj kick add -0.08 1.0E+05 8 1
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Example Simulation
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* vacuum pump breaks at 0.5 hours, no degradation
* cryo plant breaks at 3h, Lumi=0, machine down

e pump repaired at 5h, plant at 13h

* long recovery (23h)
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Recovery procedure

source
access recovery tune-time
name upstream hours hours fraction
sitewide none 0 0 0
e- injector sitewide 1 1 0.1
e- DR e- injector 1 1 0.2
- e- compressor e- DR 1 1 0.1
€ arm e- linac e- compressor 1 1 0.1
e- BDS e- linac 1 1 0.1
e+ source e- linac 1 1 0.1
+ e+ PDR e+ PDR 1 1 0.2
e arm e+ DR e+ source 1 1 0.2
e+ compressore+ DR 1 1 0.1
e+ linac e+ compresso| 1 1 0.1
e+ BDS e+ linac 1 1 0.1
IP region e+ BDS 1 1 0.2

tunetime = tunetime fraction * total downtime (includes
tunetime of upstream regions)
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repair
during
running
(hot fix)

many
repairs
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Undulator Positron Source

Electron Source Photon
Collimator Target
Pre-accelerator Capture
Pre accelerator +
- Damping Ring e
e Helical
Linac Undulator '

Interaction
Point

Linac E ’-‘S )
_W_\_D q_A;m Deliveyl
Spin Flipper

- need e beam to produce e” beam

+ low neutron production rate (thin target)
+ no pre-damping ring needed

+ polarised e
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Conventional Positron Source

EM shower in target
source 6 GeV linac

. — -

+ e* beam independent of e” beam

- target at stress limit

- large neutron rates (thick target), radiation damage
- pre-damping ring needed

- unpolarised e
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Undulator/conv. e* sources in US study

“The fact that an undulator positron source requires well
tuned high energy electrons before positrons can be
produced significantly reduces the integrated luminosity

of a LC.”

Downtime conventional undulator
US study 11.8% 15.5%

* due to dependence on e” beam
* sequential tuning procedure; tunetime proportional

to downtime
* machine development in 2 accelerator regions

simultaneously for conv. source
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Where US study can be improved

* not implemented:
* ¢ driver linac (conv.)
* pre—-damping ring (conv.)
e auxiliary source (undulator)

* same MTBF
should be smaller for conv. (stress limit, radiation damage)

* unrealistic assumption: tuning time o time w/o beam
even if no work in region

All points in favour of conv. source
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Extension of conv. source simulation

e” driver linac (6 GeV)

approximated using
5 GeV e injector

pre-Damping ring
as modelled by Tom
for “warm” LC options

MTBF of conventional source

assume 75% of
undulator MTBF

Downtime conv. undulator
US study 11.8% 15.5%

+ driver 13.0%

+ pre-DR 14.7%

+ 75% MTBF 15.0%
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Add auxiliary source for undulator option

Aux. source (500 MeV)

500MeV  capture

287 MeV
e+ 5 GeV
) \ target & G- Uy pasS injector linac C

e+

phscs
detector

* provides low intensity e™ beam
* used for tuning of e™ arm (+machine development)

We assume: tune-time fraction in e arm reduced to 50% (75%)
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Results

Downtime conventional undulator

US study 11.8% 15.5%

+ driver 13.0%

+ pre-DR 14.7% < shown at Daresbury

+ 75% MTBF 15.0% hop on Positron Sources for the

+ aux. (75%) 14.1% ternational Linear Collider

+ aux. (50%) 13.0% i
Conclusions:

similar downtimes
aux. source important
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Benchmarking: HERA

compare simulation with existing machine

Halle NORD (H1)
Hall NORTH (H1)
HERA

Halle WEST (HERA-B)
Hall WEST (HERA-B)

Halle OST (HERMES) §
Hall EAST (HERMES)

oooooooo
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started by Michiko Minty

need list of components and
MTBFs

storage ring: adapt code?
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Summary

e working setup of Tom's program

* undulator vs. conventional positron source:
* more realistic simulation of conv. source
e added auxiliary source for undulator option
* both options give similar downtimes

Next Steps

e HERA

* commissioning phase
* recovery procedure

* machine development
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