Investigating SUSY Dark Matter at the ILC

Werner Porod IFIC-CSIC

- Cosmological data and dark matter candidates
- Neutralino LSP
- Gravitino LSP
- Theoretical uncertainties
- Conclusions

ILC workshop Vienna, 14/11/2005 1 Werner Porod (IFIC-Valencia)

Cosmological Data

R.A. Knopp et al., astro-ph/0309368

ILC workshop Vienna, 14/11/2005

Dark Matter Candidates

L. Roszkowski, astro-ph/0404052

ILC workshop Vienna, 14/11/2005

Dark Matter Candidates

L. Roszkowski, astro-ph/0404052

ILC workshop Vienna, 14/11/2005

 $\tilde{\chi}_i^0 = N_{ij}(\tilde{\gamma}, \tilde{Z}, \tilde{h}_d^0, \tilde{h}_u^0)_j$

main parameters: $M_1, M_2, \mu, \tan\beta$

Dark Matter Candidates

3

L. Roszkowski, astro-ph/0404052

ILC workshop Vienna, 14/11/2005

 $m_{1/2}$ J. Feng, hep-ph/0509309

Bulk region

http://spa.desy.de/spa

dominated by \tilde{l}_R

ILC workshop Vienna, 14/11/2005

M. Berggren, F. Richard, Z. Zhang hep-ph/0510088

ILC workshop Vienna, 14/11/2005

Stau Coannihilation

B.C. Allanach, G. Bélanger, F. Boudjema, A. Pukhov hep-ph/0410091

6

ILC workshop Vienna, 14/11/2005

Model	Α′	C′	D'	G′
M1/2	600	400	525	375
<i>m</i> 0	107	80	101	113
tan eta	5	10	10	20
$\mu(m_Z)$	773	519	-663	485
m_{χ}	242	158	212	148
m_{e_R}	251	174	224	185
$m_{ au_1}$	249	167	217	157
Δm	7	9	5	9
$\Omega_{DM}h^2$	0.09	0.12	0.09	0.12
Optimal \sqrt{s} GeV	505	337	442	316
Error on Δm GeV	0.487	0.165	0.541	0.132
Error on $\Omega_{DM}h^2$ in %	3.4	1.8	6.9	1.6

P. Bambade, M. Berggren, F. Richard, Z. Zhang, hep-ph/00406010

ILC workshop Vienna, 14/11/2005 7 Wei

Focus point

characterized: $m_0 \simeq O(1-10)$ TeV $\Rightarrow |\mu| \sim O(M_{1,2})$

 $m_{\tilde{e},\tilde{\nu}}$ from A_{FB} of $\tilde{\chi}_i^0$, $\tilde{\chi}_j^{\pm}$ (exploiting full spin information) G. Moortgat-Pick talk at Snowmass'05

B.C. Allanach et al., hep-ph/0410091

ILC workshop Vienna, 14/11/2005

Higgs Funnel

B.C. Allanach, G. Bélanger, F. Boudjema, A. Pukhov hep-ph/0410091

9

ILC workshop Vienna, 14/11/2005

Higgs Funnel

B.C. Allanach, G. Bélanger, F. Boudjema, A. Pukhov hep-ph/0410091

9

ILC workshop Vienna, 14/11/2005

Incomplete list of interesting scenarios

- M. Drees, hep-ph/0502075: LEP anomalies due to light h^0 , A^0 , gives additional funnel for $m_{\tilde{\chi}_1^0}$; details of h^0 scenario can be found in A. Djouadi, M. Drees and J. L. Kneur, hep-ph/0504090
- W. de Boer hep-ph/0508108: EGRET excess of diffuse galactic γ rays, focus point like, large $\tan\beta$
- C. Boehm, A. Djouadi and M. Drees, hep-ph/9911496: light stop co-annihilation; M. Carena et al., hep-ph/0508152: remaining scalars very heavy if at the same time electroweak baryogenesis
- H. Baer et al., hep-ph/0511034, sign $(M_1) = -$ sign (M_2) , requires bino-wino coannihilation \rightarrow only 3-body decays of $\tilde{\chi}_2^0$, enhanced $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \gamma$

ILC workshop Vienna, 14/11/2005 10 Werner Porod (IFIC-Valencia)

ILC workshop Vienna, 14/11/2005 11

• . . .

NMSSM

12

ILC workshop Vienna, 14/11/2005

Gravitino Dark Matter

$$m_{3/2} \simeq O(100) \text{ GeV}^{\dagger} \Rightarrow \text{very longlived NLSP}$$

 $\Omega_{3/2}h^2 = \frac{m_{3/2}}{m_{NLSP}}\Omega_{NLSP}h^2$

Neutralinos: $\tilde{\chi}^0 \to \tilde{G}\gamma, \ \tilde{G}Z, \ \tilde{G}h^0$: disfavoured by BBN

Sleptons:
$$\tilde{l}_R \to \tilde{G}l$$

3-body decays $\tilde{l} \to \tilde{G}lZ$, $\tilde{G}\nu W$ also constrained by BBN

[†] J. Ellis, K. Olive, Y. Santoso, V. Spanos '03; W. Buchmüller, K. Hamaguchi, M. Ratz, T. Yanagida '04; J.L. Feng, S. Su, F. Takayama '04; J.L. Feng, B.T. Smith '04; ...

ILC workshop Vienna, 14/11/2005 13 Werner Porod (IFIC-Valencia)

light gravitino LSP, $\tilde{\chi}_1^0$ of \tilde{l}_R NLSP

Standard thermal history of the universe:

 $\Omega_{3/2}h^2 \simeq 0.11 \left(\frac{m_{3/2}}{100 \,\mathrm{eV}}\right) \left(\frac{100}{g_*}\right) \qquad (g_* \simeq 90 - 140)$

Current data: $\Omega_M h^2 \simeq 0.134 \pm 0.006$, $\Omega_B h^2 \simeq 0.023 \pm 0.001$

 $\Rightarrow m_{3/2} \simeq 100 \text{ eV}$ if DM candidate, warm dark matter constraints from Lyman- α forest: $m_{WDM} \gtrsim 550 \text{ eV}$ (M. Viel et al., arXiv:astro-ph/0501562)

 \Rightarrow assume additional entropy production, e.g. non-standard decays of messenger particles

(E. Baltz, H. Murayama, astro-ph/0108172; M. Fujii and T. Yanagida hep-ph/0208191)

Broken R-parity

 $\begin{aligned} & --\tan\beta = 10, \ \mu > 0, \ --\tan\beta = 10, \ \mu < 0 \\ & --\tan\beta = 35, \ \mu > 0, \ --\tan\beta = 35, \ \mu < 0 \end{aligned} \qquad m_{3/2} = 100 \text{ eV}, \ n_5 = 1 \end{aligned}$

M. Hirsch, W. Porod, D. Restrepo, hep-ph/0503059

ILC workshop Vienna, 14/11/2005

15

Theoretical Uncertainties

- Numerical solution of the Boltzmann equations: up to 1%
- spectrum calculation, e.g. m_0 = 70 GeV, $m_{1/2}$ = 350 GeV, $A_0=$ 0, $\tan\beta=$ 10, $\mu>$ 0

	ISAJET7.71	SOFTSUSY 1.9	SPHENO 2.2.2	SUSPECT 2.3
$ ilde{\chi}^0_1$	136.7	140.0	139.5	140.0
$ ilde{ au_1}$	147.7	145.7	147.1	149.7
$ ilde{e}_R$	155.7	153.8	155.4	157.6
h^{O}	115.8	113.1	113.4	113.3
$m_{ ilde{ au}_1} - m_{ ilde{\chi}_1^0}$	11.0	5.7	7.6	9.7
Ω	0.136	0.069	0.092	0.120

G. Bélanger, S. Kraml, A. Pukhov, hep-ph/0502079

 missing higher order corrections
Supersymmetry Parameter Analysis (SPA) project: http://spa.desy.de/spa

ILC workshop Vienna, 14/11/2005 16

- At an ILC SUSY particles will be measured very precisly
- $\bullet \Rightarrow$ allows for cross-checks of cosmological ideas

Parameter Dependencies

A. Birkendal, K. Matchev, hep-ph/0507214

ILC workshop Vienna, 14/11/2005

18

A. Birkendal, K. Matchev, hep-ph/0507214

ILC workshop Vienna, 14/11/2005