Performance studies of GEM or MWPC equipped MPI-TPC in magnetic fields

Katsumasa Ikematsu (DESY)

On behalf of the Asia/Europe TPC collaboration (KEK - U. of Tsukuba - TUAT - Kogakuin U. - Kinki U. - Hiroshima U. -Saga U. - Mindanao State U. - Carleton U. - DESY - MPI)

The ECFA International Linear Collider Workshop 2005 16 November, 2005 @Vienna, Austria

Overview

- MPI-TPC: Readout scheme and available data sets
 - ✦ Features, Pad geometry, B-field, Beam/Cosmic-ray & Gas
 - ✦ Facilities for Beam/Cosmic-ray tests
- Pad response studies
 - ♦ z-dependence of charge width
 - -> width of pad response (@ 0 drift) & transverse diffusion constant
- Transverse spatial resolution studies
 - ♦ Goal: sigma_x ~ 170 µm @ 250 cm max. drift (4T, LDC)
 - ♦ Scale to real TPC -> transverse momentum resolution
- Longitudinal spatial resolution studies
 - ♦ Goal: sigma_z < 1 mm (for good track-cluster matching)</p>
- Summary & outlook

Prototype TPC (MPI-TPC)

- Constructed at MPI (Max Plank Institute)
- Detachable endplate allows direct comparison of sensors
 - ♦ MPGD: GEM and MicroMEGAS
- 32 pads x 12 pad-rows = 384 readout ch
 (224 ch 7 pad-rows equipped)
- Maximum drift length: 26 cm (Eff. volume: 10 x 10 x 26 cm³)
- 1 atm. Ar dominated Gas (Ar-CH₄-CO₂ (93-5-2): TDR Gas, Ar-CH₄ (95-5): P5 Gas)
- Charge sensitive pre-amplifier based on ALEPH readout electronics;
 FASTBUS FADC: 80ns time slice,
 Pre-amplifier: 500ns shaping time

Facilities for Beam/CR test

• Superconducting solenoid & KEK-12GeV PS (π 2) for beam test

 Superconducting solenoids at DESY and KEK-Cryogenic Center for cosmic-ray tests

Readout scheme & data sets

Readout	GEM				MWPC				
Feature	Standard CERN GEM Triple GEM structure			+ resistive anode	1 mm anode-cathode thin gap 2 mm anode-wire spacing				
Pad geom. [mm] Width (pitch) x Length (pitch)	1.17 (1.27) x 6 (6.3)		2 (2.3) x 6 (6.3)	2 (2.3) x 6 (6.3)	2 (2.3) x 6 (6.3)				
B-field [T]	OT	1T	1T	1T	OT	1T	0 T	1 T	4 T
Beam/CR	Beam		CR	Beam	Beam		CR		
Gas	P5	P5, TDR	TDR	P5	TDR				

◆ GEM + resistive anode data -> to be analyzed soon

MicroMEGAS data -> Paul's & Vincent's talks in detail

Pad response analysis

Method: measurement of charge width from pad response

GEM(1T) w/ 2mm-pad

- Plot Q_i/Q_{tot} against ($X_{track} X_{pad-center}$) for different drift region ($N_{zbins} = 15$)
- Reject single & double pad hits for pad response analysis
- Divide the plot into different X-Slices and fit each slice with a gaussian
- Plot the sigma as a function of drift length

Ratio of single pad hit

- For drift distance less than 15 cm, the # of hits w/ only single pad / row increase for the 2 mm pad.
- This is the sign we cannot obtain charge width in the case of 2 mm pad.
- Narrower pad size is necessary!
- ♦ We replaced pad-plane from 2 mm non-stagg.
 (2 mm width + 0.3 mm gap) to 1 mm staggered
 (1.17 mm width + 0.1 mm gap).

Z-dep of charge width (MWPC)

Charge width for different drift region (MWPC, 1T, TDR)

Z-dep of charge width (GEM)

Charge width for different drift region (GEM, 1T, TDR)

Width of PR (TDR & P5, 1T)

y * z-dependence of charge width

$$\sigma_{PR}^{2} = \sigma_{PR}(0)^{2} + C_{D}^{2} \mathbf{z}$$

 $\sigma_{PR}(0)$: Width of pad response (@ 0 drift)

- ♦ TDR(1T): 453 µm (GEM)
- ♦ P5(1T): 507 µm (GEM)
- ✦ TDR(1T): 1390 µm (MWPC)

GEM has big advantage over MWPC as to the 2 track separation

$$\sigma_{PR}(0)^2 = \sigma_{PRF}^2 + w^2/12$$

- ♦ w/√12: 367 µm (GEM)
- ♦ w/√12: 663 µm (MWPC)

Comparison between sim & meas.

Measurement is more or less consistent with simulation

Extrapolation to 3T - 4T maybe justified

X-resol (GEM, B-dep, P5)

X-resol (TDR & P5, 1T)

- GEM voltage was adjusted to get same pulse height
- sigma_0 = 65 ~ 80 micron (P5 & TDR)
- P5 gas provides better x-resolution
- sigma_x ~ 175 micron (@ 26 cm drift, P5)

X-resol (Phi-dep, P5, 1T)

- sigma_0 of phi = 10 deg data is significantly larger because of angular pad effect.
- diffusion term is comprable -> effect of phi-dependence is negligible for x-resolution at long drift distances

Comparison between GEM & MWPC

GEM: 1 mm staggered, MWPC: 2 mm non-stagg. pad (1T, TDR)
S/N ratio was small in the case of MWPC readout -> large sigma_0

Scale to real TPC

- According to the Magboltz simulation, C_D is reduced by a factor of 160(1T) / 45(4T) in the case of P5, giving sigma ~ 160 um at the max. drift distance of 250 cm.
 - Resultant momentum resolution (for the GLD, 3T w/ Jupiter full MC simulation) had been calculated by A. Yamaguchi. (http://chep.knu.ac.kr/ACFA8/program2.php?sub=Simulation)

Momentum resolution vstransverse momentum (|cos| < 0.7)

A. Yamaguchi (U. Tsukuba)

Width of PR & x-resol (MWPC, 4T, TDR)

Katsumasa Ikematsu (DESY) / ECFA ILC 05

⊗_B

wire

Z-resol (GEM & MWPC, 1T)

sigma_z < 500 micron (@ 26 cm drift, GEM & MWPC)</p>

Obtained z-resolution satisfies the requirement

No problem for Track-Cluster matching

Summary & outlook

- Performance studies of MPI-TPC w/ triple GEM or MWPC were performed using test beam and cosmic ray.
- Transverse diffusion and spatial resolution were measured as a function of drift distance up to 26 cm.
- Diffusion constants were found to be consistent with those given by Magboltz simulation.
- Extrapolation of the obtained spatial resolution to 4T gives 160 micron at the maximum drift length (250 cm) of the LDC-TPC.
- Obtained z-resolution satisfies the requirement.
- "Ultimate" MWPC readout may also work, but with poorer granularity and larger ExB effect.
- MPI-TPC w/ & w/o a resistive anode combined with GEM were also tested using test beam at KEK at the end of October (To be analyzed soon).
- Fair comparison between GEM and MicroMEGAS w/ same environment.

Backup slides

Requirement for transverse single point resolution

• Required point resolution: $\sigma_{r\phi}$ & # of samples: n

$$\frac{\nabla_{p_{\mathrm{T}}}}{p_{\mathrm{T}}} \simeq \sqrt{\left(\frac{\alpha'\sigma_{r\phi}}{Bl^{2}}\right)^{2} \left(\frac{720}{n+4}\right) p_{\mathrm{T}}^{2}} + \left(\frac{\alpha'C}{Bl}\right)^{2} \left(\frac{10}{7} \left(\frac{X}{X_{0}}\right)\right)$$
measurements
multiple scattering

- ← LDC: (B, I) = (4 T, 120 cm)
- ← GLD: (B, I) = (3 T, 165 cm)
- $n: 200 \sim 250 \rightarrow \sigma_{r\phi} \lesssim 150 \ \mu \mathrm{m}$
- R&D item: Good $\sigma_{r\phi}$ for long drift distance (z ~ 2.5 m)?
 - Ionized primary electrons drift to readout pad curling up B-field
 - Dispersion of charge cloud strongly depends on B-fields & drift distance
 - B-fields dependence of $\sigma_{r\phi}$
- Understand performance of prototype TPCs in higher B-fields

Possible sensors for LC-TPC

- There are 3 readout schemes for LC-TPC in the market
- "Ultimate" MWPC (Well established -> should be fall back option)
 - 1 mm thin gap between anode-wires to cathode-pad
 Localize induced charge dist. on pads; Narrow PRF ~ 1.5 mm
 - 2 mm small pitched anode-wires
 Small wire-angular and ExB effect
- ◆ Gas Electron Multiplier (GEM)
 - Narrow PRF & Fast signal (Δt ~ 20 ns, no ion tail)
 (only electrons are collected by the readout structure)
 -> Very good multi-track resolution: ΔV ~ 1 mm³
 - ♦ Intrinsic ion feedback suppression: I⁺/I⁻ ~ 0.1 %
 - Comparably small distortions due to ExB effects
 - ✦ High flexibility in the geometry of the readout pads
- Micro Mesh Gaseous Structure (MicroMEGAS)
 - ♦ Next talk in details
- Comparison w/ same field cage, electronics and analysis

KEK test beam in Jun '05

JACEE Magnet (PCMAG)

Superconducting solenoid & " π 2 beam line" at KEK-12GeV PS

