Simulation Studies for a triple-GEM and a MicroMegas Set-up with MediPix Detector

Simulations based on HEED + MAGBOLTZ

- Two Set-ups studied
 - Freiburg triple-GEM + MediPix
 - NIKHEF MicroMegas + MediPix
- (Some) conclusions

Introduction

- Recent R&D work on GEMs/MicroMegas + MediPix are an important step towards a "digital TPC" = the electronic bubble chamber
 - does allow to resolve individual ionisation clusters
 - = the most basic piece of information along a track
 - unprecedented potential for pattern (track) recognition and track fitting in dense track environments
 - dE/dx measurement by cluster counting provides factor two better resolution compared to classical charge determination
- Results already promising but needs better (deeper) understanding and lots of parameters to be optimized
 - --- Gas properties (cluster density, electrons per cluster, diffusion)
 - --- Gas amplification (GEMs vs MicroMegas, # of GEMs, E-field, gas gain)
 - MediPix (noise, thresholds)

Simulations can help a lot

Simulation Tool (Clusco)

- Generates ionization clusters/electrons along tracks and drifts electrons towards GEMs/MicroMegas structures
 - HEED (I. Smirnov) for cluster generation (including δ -electrons)
 - MAGBOLTZ (S. Biagi) for gas properties (diffusion, drift velocity)
- "Squeeze" electrons through GEM/MicroMegas holes and perform gas amplification
 - use simple geometric transformations, no detailed E-field simulation
 - exponential gas gain distribution
 - measurements from Aachen group indicate exponential distribution
 - gas gain on wires more follows Polya distribution
- Drift ALL electrons created in gas amplification to next GEM or MediPix (can be several Millions in total)

Count electrons collected on MediPix, generate noise + apply detection thresholds (digitization step)

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

Freiburg triple-GEM set-up

- Nice "blobs" seen along tracks from 106 Ru source (β with 3.5 MeV max.)
- Are "blobs" = clusters?
- Most likely, but
 - often holes in between blobs visible
 - blob density significantly lower than expected cluster density
- Cluster density for Ar/CO₂ (70:30) and a few MeV electrons (~m.i.p.)
 - expect: ~30 clusters/cm
 - seen: about half or less of expected value

Cluster Distributions

- Cluster density of a few MeV electrons from source different to "high energy" m.i.p. (~0.6 GeV pions)?
 - NO, about the same, just total number of electrons differs
 - **2 MeV electrons:** 28.9 ± 0.3 clusters/cm, 62.8 ± 0.6 electrons/cm
 - 0.6 GeV pions: 30.3 ± 0.3 clusters/cm, 76.4 ± 0.6 electrons/cm
 - probability for single electron cluster: ~80%

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

Michael Hauschild, 16-Nov-2005, page 5

fewer δ-electrons

for 2 MeV electrons

Electron Charge Distributions

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

Threshold Scan

At lower threshold more clusters become visible

- but then running into noise problem

detection thresholds per pixel (allow 10% variation):

- Even with very low threshold sensitivity not sufficient

Basic reason

- diffusion in between GEMs and to MediPlx too large (blobs too large)
- electron charge cloud diluted, too few electrons per pixel

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

Possible solutions

- higher gas amplification (but already operating at gas gain of 40000)

- lower diffusion gas (in E-field range of 5 kV/cm)
- --- change GEM set-up, fewer GEMs?, optimize E-field for lower diffusion?

Combining pixels helps

- more clusters visible, granularity still sufficient for large blobs

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

Cluster Finding

Apply simple cluster finding algorithm + check performance

- search for simply connected areas, use center-of-gravity

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

Reconstructed Clusters + Residuals

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

Main differences between GEMs (Freiburg) + MicroMegas (NIKHEF) set-up

only 50 μm gap + high E-field (70 kV/cm) from MicroMegas to MediPix,
~5 mm at ~4.5 kV/cm from first GEM to MediPix

- → much lower diffusion in MicroMegas case ⇒ expect (much) smaller blobs
 - Ar/CO₂ (70:30) used in GEM set-up, He/i-C₄H₁₀ (80:20) in MicroMegas set-up

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

MicroMegas II

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

GEMs + MediPix

- large "blobs" because of large diffusion among GEMs and to MediPix
 - electron cloud diluted over too many pixels, many pixels below threshold, single electrons clusters mainly undetected
- solutions
 - reduce diffusion (optimize gas, E-field, GEM set-up)
 - use larger pixels, granularity still good enough for large "blobs"

MicroMegas + MediPix

- rather small "blobs" because of low diffusion between MicroMegas and MediPix
 - efficient to detect individual electrons, need to keep small pixel size

GEMs vs MicroMegas

- GEMs good to detect whole clusters, Micromegas single electrons
- What do we need?
 - e.g. dE/dx needs cluster counting, not counting of electrons

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations

...at the ILC...

- 100 GeV muon, B = 4 T, TESLA-TDR gas, 100 cm drift

EFCA/ILC Vienna Tracking, GEM/MicroMegas + MediPix Simulations