Background Studies for the LDC TPC

Neutrons and Other Junk

Adrian Vogel DESY FLC

Background at the ILC

e⁺e⁻ pairs are the main source of background

- created through beam-beam interaction
- smash into forward calorimeters and quadrupoles
- create neutrons, photons, and charged particles
- Secondary particles produce detector hits
 - charged tracks
 - neutron-proton collisions in the TPC gas
 - nuclear interactions more photons
 - Compton scattering, photon conversion

Neutrons flood the detector, decay after 15 minutes

Simulation Tools

Guinea Pig

- simulates beam-beam interaction
- generates (among others) e⁺e⁻ pair particles

Brahms

- simulates interaction of particles with the detector
- based on old Geant 3, Fortran

Mokka

- successor of Brahms, under continuous development
- based on state-of-the-art Geant 4, C++

Detector Geometries – TESLA TDR

- Head-on
- LAT (red)
- Low-Z absorber
 Ø = 24 mm
- LCAL (blue)
- Quadrupoles
 L* = 3.00 m

Detector Geometries – Stahl Layout

- Head-on or 2 mrad
- LumiCal (red)
- Low-Z absorber
 Ø = 26 mm
- BeamCal (blue)
- Quadrupoles $L^* = 4.05 \,\mathrm{m}$

Detector Geometries – Crossing Angle

- 20 mrad
- LumiCal (red)
- Low-Z absorber $Ø_1 = 26 \text{ mm}$ $Ø_2 = 50 \text{ mm}$
- BeamCal (blue)
- Quadrupoles $L^* = 4.05 \,\mathrm{m}$
- with or without additional DID

Magnetic Field Maps

Plain solenoidSolenoid with DIDRealistic field maps (plus simplified quadrupoles)

Adrian Vogel

Running Mokka

Input

- TESLA TDR beam parameters
- Guinea Pig pairs from 5 simulated BX
- different geometries and magnetic fields
- neutron production enabled in Geant 4
- standard range cuts

Output

- write out hits on all detectors to LCIO files
- monitor all particles entering the TPC (for a future dedicated, detailed simulation)

Results – Hits on the Vertex Detector

Adrian Vogel

Results – TPC Hits

Stahl layout, TDR gas: 5500 \pm 900 Mokka hits/BX Stahl layout, P10 gas: 5000 \pm 600 Mokka hits/BX

Adrian Vogel

Results – Particles in the TPC

Particles entering the TPC per BX

	TDR layout	Stahl layout
Neutrons	14700 ± 400	720 ± 70
Photons	9400 ± 200	$5500\pm~100$
Electrons	$70\pm~60$	40 ± 40

Particles created inside the TPC per BX

	TDR layout	Stahl layout
Electrons	3700 ± 400	$2550\pm~350$
Protons	$150\pm~10$	12 ± 2

Neutron Production – Distances

Origins of neutrons reaching the TPC

Adrian Vogel

Photon Production – Distances

Origins of photons reaching the TPC

Adrian Vogel

Neutron Production – Energies

Spectra for 5 BX with TDR layout (Stahl is similar)

Adrian Vogel

Photon Production – Energies

Spectra for 5 BX with TDR layout (Stahl is similar)

Adrian Vogel

Charged Particle Production – Energies

Energies of charged particles created inside the TPC

Adrian Vogel

Next Steps

Further work still needs to be done:

- use a dedicated, detailed TPC simulation (A. Münnich)
- get a better understanding and handling of neutrons (low-energy behaviour, diffusion, decay) – use Fluka?
- get more statistics (unleash the power of the Grid!)

Final goal of the TPC simulations:

- create a "background library" with ready-to-use events
- estimate all background tracks and the occupancy at a given time (with superposition of 160 BX)

How much background will the detector be able to handle?

Beware – Things Might Get Worse...

Adrian Vogel