Studies of Resolution and Reconstruction Methods for a TPC

Ralf Diener²

Markus Ball¹, Ties Behnke¹, Ralf Diener², Andreas Imhof¹, Katsumasa Ikematsu¹, Matthias Enno Janssen¹, Alexander Kaukher³, Krzystof Komar¹, Joachim Mnich¹, Oliver Schäfer³ and Adrian Vogel¹

¹DESY, ²Universität Hamburg, ³Universität Rostock

UH <u>i</u> Universität Hamburg

Outline

- TPC Prototype and Reconstruction Software
- Pad Response Function
 - Measured resolution and reconstruction problems for staggered and non-staggered pad layout
 - Pad Response Function
 - Resolution results with Pad Response Function
- Monte Carlo Simulation
 - Simulation
 - First results: efficiency studies
- Summary and Outlook

TPC Prototype and Measurement Setup

- Prototype: MediTPC
 - Lenght: 800 mm, diameter: 270 mm
 - Sensitive volume: 666.0 x 49.6 x 52.8 mm³
 - Triple-GEM amplification structure
 - Staggered and non-staggered layout pad planes (Pitch: 6.2, 2.2 mm)
 - Magnetic field up to 5.25 T

Fitting Software: Multifit

- Input Formats: LCIO, ROOT
- 3 Step Process: Hit Reconstruction \rightarrow Track Finding \rightarrow Track Fitting
- Implemented Fitting Methods (each for straight and curved tracks)
 - Chi Squared Method (optional with Pad Response Function)
 - Advanced Fit Method (TPC-Group Carleton University, Canada):
 - XY track fit uses a Gaussian model for charge cloud
 - Three/Four parameter fit: Intercept X₀ (x at y=0), φ (azimuthal angle), σ (transverse size of the cloud), C (curvature)
 - Maximizes the likelihood of the observed charge on each pad

Measured Point Resolution

- Point resolution for non-staggered pad layout:
 - Reasonable dependency of drift length
- Point resolution for staggered pad layout:
 - Increasing values at small drift lengths
 - Explanation: not enough charge sharing for correct reconstruction of point positions and residuals (Pad Response)

Pad Response Function

- Signal on "not enough" pads \rightarrow too small charge sharing
- Instead of at the true position, hits get reconstructed towards the middle of the pad with highest signal

Effects of Pad Response

Implementation of Pad Response Function

- Parametrized Pad Response Function
- Input: diffusion and defocussing coefficients (values from MAGBOLTZ)
- Properties:
 - No flat region if Signal on at least 2 pads
 - Straight Line (no unfolding needed) for Signal on more than 4 pads

Point Resolution with Pad Response Function

 Use of Pad Response Function in the point reconstruction brings significant improvement of the point resolution calculation for staggered pad layout

Point Resolution with Pad Response Function

- Staggered and non-staggered measurements get comparable
- Bigger values for small drift lengths in 4T (2T) data still indicate not enough charge sharing

Monte Carlo Simulation

- Goal: Flexible Simulation Tool for TPC Test Setup
 - Cosmic muons, testbeam
 - Adjustable geometries for different setups
 - 3 GEM structure with separatly adjustable effective gains
 - Different readout geometries (pad shapes and layouts)
- Working Principle
 - Muon generator produces straight tracks with realistic energy and angular spectra
 - Prototype geometry and trigger system
 - In the following steps: taking into account E- and B-field, gas mixture, pressure, water content etc.
 - Primary ionization simulated with HEED
 - Expectation values for diffusion, drift velocity from MAGBOLTZ
 - Gas amplification and diffusion in 3 GEM structure
 - Readout at padplane

Efficiency Results of Monte Carlo Studies

Summary and Outlook

- Summary
 - Implementation of Pad Response Function results in more reliable:
 - Hit Reconstruction (Track Fitting)
 - Point Resolution Calculation
 - Working Monte Carlo Simulation
- Outlook
 - Further studies of Pad Response Function implementation
 - Improvement of the Monte Carlo simulation
 - Simulation and analysis of different pad sizes, shapes and layouts
 - Further analysis of efficiencies and sources
 - More detailed comparison of different fitting methods

More Efficiency Results

Ralf Diener [DESY, Hamburg, Germany]

Phi for Different Time Windows

Ralf Diener [DESY, Hamburg, Germany]

Point Resolution with P5 gas

 For P5 gas no increasing values at small Z distances are seen: Indicates enough charge sharing