

Status of the Aachen R&D for the ILC TPC

Martin Killenberg

Sven Lotze Joachim Mnich Astrid Münnich Stefan Roth Michael Weber

III. Physikalisches Institut B

http://www.physik.rwth-aachen.de/group/IIIphys/TPC/

ECFA International Linear Collider Workshop 2005

15. November 2005, Vienna

Status of the Aachen R&D for the ILC TPC

Overview

- Test Beam Setup
 - TPC Prototype
 - Hodoscope
- Preliminary ResultsBeamprofile
- Simulation Studies

TPC Prototype

- 5T Magnet at DESY Hamburg ⇒ 260 mm diameter
- Triple GEM readout is used
- Drift distance = 260 mm
- Maximum drift field = 1000 $\frac{V}{cm}$
- Materials with low density

Electronics: Preamplifiers

Preamplifiers: Preshape 32

- Predecessor of Premux & APV (CMS silicon tracker)
- 32 channel preamplifier/shaper
- Nominal peaking time: 45ns
- Needs cable driver to transfer signal over reasonable distance

Preamplifier

Electronics: ADCs

Fastbus ADCs (ALEPH)

- 448 Channels
- 12.5 MHz
- 8 Bits
- 20 Hz DAQ rate

Pad Planes

- 1.27 x 7 mm² Pads
- 1120 Pads
 - \Rightarrow flexible configuration of 448 active channels

- 1.27 x 3.5 mm² Pads
- 448 Pads in small angle mode (0..8 degrees)
- 448 Pads in large angle mode (25...38 degrees)

TPC Prototype: Hodoscope Test Stand

Hodoscope resolution: 60 μ m

RWITHAACHEN Martin Killenberg

Status of the Aachen R&D for the ILC TPC

Testbeam Setup

Precision Measurements: Calibration of TPC in Hodoscope :

Position in x: \pm 4 μ mPosition in y: \pm 14 μ mPosition in z: \pm 3 μ m

Measurement of drift velocity : \pm 10⁻³ mm/ μ s

All values statistical errors of the fit.

Systematic errors have to be studied!

Measurement of Field Homogeneity

Drift Velocity in the Gas (TDR : Ar-CO₂-CH₄ 93-2-5)

Measurement of Field Homogeneity

Drift Velocity in the Gas (TDR : Ar-CO₂-CH₄ 93-2-5)

Maximum sensitivity at steepest slope (80 V/cm). No results yet, analysis going on.

RNTHAACHEN

Martin Killenberg

Status of the Aachen R&D for the ILC TPC

Beamprofile in z (Time Direction)

Hodoscope

Beamprofile in z (Time Direction)

Hodoscope

TPC

Number of Timesamples per Pulse

Only two time bins per pulse \Rightarrow jitter Faster ADCs required

Beamprofile Measured with TPC

Simulation

Readout frequency > 20 MHz required

Goals: Study influence on the spatial resolution of a TPC of

- Electric and magnetic fields
- GEM settings
- Pad response, pad geometry
- Ion backdrift
- 4 Modules:
 - 1. Primary ionization
 - 2. Drift of electrons
 - 3. Gas amplification with GEMs
 - 4. Electronics (shaper, ADC)

RWITHAACHEN Martin Killenberg

- Goals: Study influence on the spatial resolution of a TPC of
 - Electric and magnetic fields
 - GEM settings
 - Pad response, pad geometry
 - Ion backdrift
- 4 Modules:
 - 1. Primary ionization
 - 2. Drift of electrons
 - 3. Gas amplification with GEMs
 - 4. Electronics (shaper, ADC)

RWITH AACHEN Martin Killenberg

- Goals: Study influence on the spatial resolution of a TPC of
 - Electric and magnetic fields
 - GEM settings
 - Pad response, pad geometry
 - Ion backdrift
- 4 Modules:
 - 1. Primary ionization
 - 2. Drift of electrons
 - 3. Gas amplification with GEMs
 - 4. Electronics (shaper, ADC)

- Goals: Study influence on the spatial resolution of a TPC of
 - Electric and magnetic fields
 - GEM settings
 - Pad response, pad geometry
 - Ion backdrift
- 4 Modules:
 - 1. Primary ionization
 - 2. Drift of electrons
 - 3. Gas amplification with GEMs
 - 4. Electronics (shaper, ADC)

Primary Ionization:

- Randomly generate distance between clusters and number of electrons per cluster according to parametrization of distributions calculated by HEED.
- Place electrons on track (helix with magnetic field, straight line without)

Drift of Electrons:

Gaussian broadening in x, y and z according to parametrization of longitudinal and transverse diffusion calculated by MAGBOLTZ for the particular gas mixture.

Input from measurement:

- Detailed parameterization of charge transfer coefficients (collection, extraction, gain) as a function of GEM settings.
- Charge broadening between GEMs mainly determined by diffusion.
 - \implies Use diffusion from parametrized MAGBOLTZ calculations.

Simulation steps:

- Calculate number of electrons according to GEM settings.
- Apply broadening according to diffusion.
- Map electrons onto pads.

Simulation Step 4: Shaping and ADC

- Calculate center of gravity of electrons in pulse.
- Apply shape smearing of electronics (currently gauss).
- Fill the electrons into time bins.
- Map charge per time bin to the ADC range.

10

5

0

10

20

30

40

50

Simulation: Particle Identification

Conclusions and Outlook

Test Beam:

- New preamplifiers working
- Precision measurements
- More than 2.2 million events recorded
- Analysis has startet
- **First Preliminary Results:**
 - Readout frequency > 20 MHz required

Detailed Simulation of GEM TPC:

- Validate simulation with measurements
- Latest version (ROOT and LCIO based) available at http://www.physik.rwth-aachen.de/group/IIIphys/TPC/en/software/

