Status of the Aachen R\&D for the ILC TPC

Martin Killenberg<br>Sven Lotze Joachim Mnich<br>Astrid Münnich Stefan Roth Michael Weber

III. Physikalisches Institut B RWIHACHEN
http://www.physik.rwth-aachen.de/group/lllphys/TPC/

ECFA International Linear Collider Workshop 2005
15. November 2005, Vienna
bmb+f
Großgeräte der physikalischen

- Test Beam Setup
- TPC Prototype
- Hodoscope
- Preliminary Results
- Beamprofile
- Simulation Studies


## TPC Prototype

- 5T Magnet at DESY Hamburg $\Rightarrow 260 \mathrm{~mm}$ diameter
- Triple GEM readout is used
- Drift distance $=260 \mathrm{~mm}$
- Maximum drift field $=1000 \frac{\mathrm{~V}}{\mathrm{Cm}}$
- Materials with low density



## Electronics: Preamplifiers

Preamplifier
Preamplifiers: Preshape 32

- Predecessor of Premux \& APV (CMS silicon tracker)
- 32 channel preamplifier/shaper

- Nominal peaking time: 45ns
- Needs cable driver to transfer signal over reasonable distance

Cable Driver


Fastbus ADCs (ALEPH)

- 448 Channels

■ 12.5 MHz

- 8 Bits
- 20 Hz DAQ rate

- $1.27 \times 7 \mathrm{~mm}^{2}$ Pads
- 1120 Pads
$\Rightarrow$ flexible configuration of 448 active channels
- $1.27 \times 3.5 \mathrm{~mm}^{2}$ Pads
- 448 Pads in small angle mode (0 .. 8 degrees)
- 448 Pads in large angle mode (25 .. 38 degrees)



## TPC Prototype: Hodoscope Test Stand



Hodoscope resolution: $60 \mu \mathrm{~m}$


Precision Measurements:
Calibration of TPC in Hodoscope :
Position in $x \quad: \pm 4 \mu \mathrm{~m}$
Position in y $: \pm 14 \mu \mathrm{~m}$
Position in z $: \pm 3 \mu \mathrm{~m}$
Measurement of drift velocity : $\pm 10^{-3} \mathrm{~mm} / \mu \mathrm{s}$
All values statistical errors of the fit.
Systematic errors have to be studied!

## Measurement of Field Homogeneity

## Drift Velocity in the Gas (TDR : Ar-CO $\mathrm{CO}_{2}-\mathrm{CH}_{4} 93-2-5$ )



## Measurement of Field Homogeneity

Drift Velocity in the Gas (TDR : $\mathrm{Ar}-\mathrm{CO}_{2}-\mathrm{CH}_{4} 93-2-5$ )


Maximum sensitivity at steepest slope ( $80 \mathrm{~V} / \mathrm{cm}$ ).
No results yet, analysis going on.

## Beamprofile in z (Time Direction)

## Hodoscope



## Hodoscope



## TPC



- Peaks in TPC measurement
- Distance 80 ns $\widehat{=} 1$ timebin



## Only two time bins per pulse $\Rightarrow$ jitter <br> Faster ADCs required

Simulation


Readout frequency > 20 MHz required

## Simulation Studies

Goals: Study influence on the spatial resolution of a TPC of

- Electric and magnetic fields
- GEM settings
- Pad response, pad geometry
- Ion backdrift

4 Modules:

1. Primary ionization
2. Drift of electrons
3. Gas amplification with GEMs
4. Electronics (shaper, ADC)

## Simulation Studies

Goals: Study influence on the spatial resolution of a TPC of

- Electric and magnetic fields
- GEM settings
- Pad response, pad geometry
- Ion backdrift


## 4 Modules:

1. Primary ionization
2. Drift of electrons

3. Gas amplification with GEMs
4. Electronics (shaper, ADC)

## Simulation Studies

Goals: Study influence on the spatial resolution of a TPC of

- Electric and magnetic fields
- GEM settings
- Pad response, pad geometry
- Ion backdrift


## 4 Modules:

1. Primary ionization
2. Drift of electrons
3. Gas amplification with GEMs
4. Electronics (shaper, ADC)


## Simulation Studies

Goals: Study influence on the spatial resolution of a TPC of

- Electric and magnetic fields


4. Electronics (shaper, ADC)

## Simulation Steps 1 and 2:

## Primary Ionization:

- Randomly generate distance between clusters and number of electrons per cluster according to parametrization of distributions calculated by HEED.
- Place electrons on track (helix with magnetic field, straight line without)


## Drift of Electrons:

- Gaussian broadening in $x, y$ and $z$ according to parametrization of longitudinal and transverse diffusion calculated by MAGBOLTZ for the particular gas mixture.


## Simulation Step 3: Amplification with GEMs

## Input from measurement:

- Detailed parameterization of charge transfer coefficients (collection, extraction, gain) as a function of GEM settings.
- Charge broadening between GEMs mainly determined by diffusion.
$\Longrightarrow$ Use diffusion from parametrized MAGBOLTZ calculations.
Simulation steps:
- Calculate number of electrons according to GEM settings.
- Apply broadening according to diffusion.
- Map electrons onto pads.


## Simulation Step 4: Shaping and ADC

- Calculate center of gravity of electrons in pulse.
- Apply shape smearing of electronics (currently gauss).

- Fill the electrons into time bins.
- Map charge per time bin to the ADC range.



## Simulation: Particle Identification

$2.4 \times 6.4 \mathrm{~mm}^{2}$ Pads, 14 Rows, TDR Gas


## Test Beam:

- New preamplifiers working
- Precision measurements
- More than 2.2 million events recorded
- Analysis has startet

First Preliminary Results:

- Readout frequency > 20 MHz required

Detailed Simulation of GEM TPC:

- Validate simulation with measurements
- Latest version (ROOT and LCIO based) available at http://www.physik.rwth-aachen.de/group/IIIphys/TPC/en/software/

