Transversely and Longitudinally Polarized Beams and SUSY CP Searches

Stefan Hesselbach High Energy Physics, Uppsala University

ECFA ILC Workshop 2005, Vienna

November 15, 2005

Outline

Introduction

- MSSM with complex parameters
- Complex parameters in chargino/neutralino sectors
- CP-odd and T-odd asymmetries using transverse beam polarization
- T-odd triple product asymmetries and longitudinal beam polarization
- Summary and outlook

Introduction MSSM with complex parameters

General MSSM:

Complex parameters in Higgs potential and soft SUSY breaking terms

- Physical phases of the parameters
 - M_1 : U(1) gaugino mass parameter
 - μ : Higgs-higgsino mass parameter
 - A_f : trilinear couplings of sfermions
 - $m_{\tilde{g}}$: gluino mass
- Introduction of CP violation
 - May help to explain baryon asymmetry of universe
 - Constraints from electric dipole moments (EDMs) of e, n, Hg, Tl [Ibrahim, Nath, '99; Barger, Falk, Han, Jiang, Li, Plehn, '01; Abel, Khalil, Lebedev, '01]
 [Oshimo, Nihei, Fujita, '05; Pospelov, Ritz, '05; Olive, Pospelov, Ritz, Santoso, '05]

Aim: analysis the CP structure of theory and determination of phases

Introduction Complex parameters in $\tilde{\chi}^{\pm,0}$ sectors

• Chargino mass matrix:
$$X = \begin{pmatrix} M_2 & \sqrt{2} m_W s_\beta \\ \sqrt{2} m_W c_\beta & \mu \end{pmatrix}$$

Neutralino mass matrix:

$$Y = \begin{pmatrix} M_1 & 0 & -m_Z s_W c_\beta & m_Z s_W s_\beta \\ 0 & M_2 & m_Z c_W c_\beta & -m_Z c_W s_\beta \\ -m_Z s_W c_\beta & m_Z c_W c_\beta & 0 & -\mu \\ m_Z c_W c_\beta & -m_Z c_W s_\beta & -\mu & 0 \end{pmatrix}$$

 $s_{\beta} \equiv \sin \beta, c_{\beta} \equiv \cos \beta$

- μ : Higgs-higgsino mass parameter $\rightarrow |\mu|, \varphi_{\mu}$
- M_1 : U(1) gaugino mass parameter $\rightarrow |M_1|, \varphi_{M_1}$
- M_2 : SU(2) gaugino mass parameter
- Diagonalization \Rightarrow complex mixing matrices \rightarrow enter $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$ couplings

Transverse beam polarization

Chargino/neutralino production

$$e^+e^- \longrightarrow \tilde{\chi}_i + \tilde{\chi}_j$$

with transverse beam polarization (4-vector t^{μ}_{\pm} , polarization degree $\mathcal{P}^{T}_{e^{\pm}}$)

• Terms in amplitude squared $|T|^2 = P$ depending on $\mathcal{P}_{e^{\pm}}^T$: $P_T \sim \mathcal{P}_{e^{-}}^T \mathcal{P}_{e^{\pm}}^T [f_1 \Delta_1 r_1 + f_2 \Delta_2 r_2]$ (in limit $m_e = 0$!) f_i : couplings; Δ_i : propagators; r_i : products of t_{\pm} and momenta

 \Rightarrow both beams have to be polarized

[POWER report, hep-ph/0507011]

- r_1 is real; r_2 is imaginary, consisting of products like $i\epsilon_{\mu\nu\rho\sigma}t^{\mu}_{\pm}p^{\nu}_{i}p^{\rho}_{j}p^{\sigma}_{k}$
 - \Rightarrow with complex couplings f_2 : real contributions to observables
 - \Rightarrow CP-odd terms $\sim \text{Im}(f_2\Delta_2)\text{Im}(r_2)$ at tree level
 - \Rightarrow CP-odd asymmetries $\sim \mathcal{P}_{e^{-}}^{T} \mathcal{P}_{e^{+}}^{T}$

Transverse beam polarization

• Chargino production: [Bartl, Hohenwarter-Sodek, Kernreiter, Rud, hep-ph/0403265] Dirac particles: couplings $f_2\Delta_2$ have to be real (CPT invariance)

 \Rightarrow CP-odd terms $f_2\Delta_2 r_2$ vanish

- \rightarrow CP-even asymmetries can be defined with help of $f_1 \Delta_1 r_1$
- Neutralino production:

[Bartl, Fraas, SH, Hohenwarter-Sodek, Kernreiter, Moortgat-Pick, hep-ph/0510029]

Majorana particles: *t* and *u* channels contribute

- \Rightarrow CP-odd terms $f_2 \Delta_2 r_2 \neq 0$ allowed
- \Rightarrow CP-odd observables can be defined

→ more details → Karl Hohenwarter-Sodek's talk in SUSY session

Transverse beam polarization

(factor 0.54 for $(\mathcal{P}_{e^-}^T, \mathcal{P}_{e^+}^T) = (90\%, 60\%))$

T-odd triple product asymmetries

Chargino and neutralino production and decay

$$e^+e^- \longrightarrow \tilde{\chi}_i + \tilde{\chi}_j \longrightarrow \tilde{\chi}_i + \tilde{\chi}_1^0 f \bar{f}^{(\prime)}$$

- Full spin correlation between production and decay [Moortgat-Pick, Fraas, '97; Moortgat-Pick, Fraas, Bartl, Majerotto, '98, '99; Choi, Song, Song, '99]
- Amplitude squared $|T|^2 = PD + \sum_{P}^{a} \sum_{D}^{a}$
- In Σ_P^a and Σ_D^a : products like $i\epsilon_{\mu\nu\rho\sigma}p_i^{\mu}p_j^{\nu}p_k^{\rho}p_l^{\sigma}$
 - \Rightarrow with complex couplings: real contributions to observables
 - \Rightarrow CP violation at tree level

T-odd triple product asymmetries

 \rightarrow CP-odd, if final state interactions and finite-widths effects can be neglected

T-odd triple product asymmetries

- Chargino/neutralino production with subsequent three-body decays [Bartl, Fraas, SH, Hohenwarter-Sodek, Moortgat-Pick, hep-ph/0406190] [Bartl, Fraas, SH, Hohenwarter-Sodek, Moortgat-Pick, in preparation]
- Chargino/neutralino production with subsequent two-body decays
 - Leptonic decays
 [Bartl, Fraas, Kittel, Majerotto, hep-ph/0308141, hep-ph/0308143]
 [Bartl, Fraas, Kernreiter, Kittel, Majerotto, hep-ph/0310011]
 [Bartl, Fraas, Kittel, Majerotto, hep-ph/0406309]

 Decays into W and Z
 [Bartl, Fraas, Kittel, Majerotto, hep-ph/0402016]
 [Kittel, Bartl, Fraas, Majerotto, hep-ph/0410054]
 - CP asymmetries using tau polarization for $\ell = \tau$ [Bartl, Kernreiter, Kittel, hep-ph/0309340; Choi, Drees, Gaissmaier, Song, hep-ph/0310284]
- Monte Carlo study for neutralino production and decay [Aquilar-Saavedra, hep-ph/0404104]
- → more details → Olaf Kittel's talk in SUSY session

T-odd asymmetries and beam polarization

Asymmetry A_T

for
$$e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 \ell^+ \ell^-$$

[Bartl, Fraas, SH, Hohenwarter-Sodek, Moortgat-Pick, hep-ph/0406190; POWER report, hep-ph/0507011]

$$\begin{split} &\tan\beta = 10,\, M_2 = 300 \; {\rm GeV},\, |M_1| = 150 \; {\rm GeV},\, |\mu| = 200 \; {\rm GeV} \\ &\varphi_{M_1} = 0.5\pi,\, \varphi_{\mu} = 0,\, m_{\tilde{e}_L} = 267.6 \; {\rm GeV},\, m_{\tilde{e}_R} = 224.4 \; {\rm GeV} \\ &\sqrt{s} = 500 \; {\rm GeV},\, \mathcal{L} = 500 \; {\rm fb}^{-1},\, \mathcal{P}_{e^+} = +0.6,\, +0.3,\, 0,\, -0.3,\, -0.6 \end{split}$$

- $\rightarrow e^-$ polarization considerably enhances A_T
- $\longrightarrow e^+$ polarization enhances σ

Measurability of A_T : ~ $|A_T|\sqrt{\sigma \mathcal{L}}$

 $\rightarrow e^+$ polarization enhances measurability by $\sim 30\%$

T-odd asymmetries and beam polarization

Explanation for behavior of A_T

Solution Solution Solution In the second state of the second

- Unpolarized beams: \tilde{e}_L and \tilde{e}_R contributions cancel ⇒ small asymmetries A_T
- ▶ $\mathcal{P}_{e^-} = -0.9$: \tilde{e}_L contributions dominate \Rightarrow large asymmetries A_T
- $\mathcal{P}_{e^-} = +0.9$: \tilde{e}_R contributions dominate \Rightarrow large A_T with opposite sign
- Additional e^+ polarization: only small enhancement of A_T

T-odd asymmetries and beam polarization

Asymmetry
$$A_{CP}$$
 for $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\tau}_1^+ \tau^-$
[Bartl, Fraas, Kernreiter, Kittel, Majerotto, hep-ph/0310011; POWER report, hep-ph/0507011]
 $\tan \beta = 5, M_2 = 200 \text{ GeV}, |M_1| = 5/3M_2 \tan^2 \theta_W, |\mu| = 250 \text{ GeV}, \varphi_{M_1} = 0, \varphi_{\mu} = 0$
 $|A_{\tau}| = 1500 \text{ GeV}, \varphi_{A_{\tau}} = 0.5\pi, m_{\tilde{\tau}_1} = 143 \text{ GeV}, m_{\tilde{\tau}_2} = 210 \text{ GeV}$

 \rightarrow Additional e^+ polarization enhances mainly σ

Summary and outlook

- CP-odd asymmetries and transverse beam polarization
 - Asymmetries in neutralino production and decay $\sim \mathcal{P}_{e^-}^T \mathcal{P}_{e^+}^T$
 - ⇒ Polarized positrons necessary to measure asymmetries
 - $e^+e^- \rightarrow \gamma Z$: asymmetries $\sim \mathcal{P}_{e^-}^T \mathcal{P}_{e^+}^T$ [POWER report, hep-ph/0507011] (sensitive to CP-violating $\gamma \gamma Z$, $\gamma Z Z$ couplings)
 - $e^+e^- \rightarrow t\bar{t}$: asymmetries $\sim \frac{1}{2}(\mathcal{P}_{e^-}^T \mathcal{P}_{e^+}^T)$ [POWER report, hep-ph/0507011] (sensitive to new CP-violating (pseudo-)scalar or tensor couplings)
- CP-odd asymmetries and longitudinal beam polarization
 - → Positron polarization enhances cross section

 \Rightarrow For \mathcal{P}_{e^+} = 60%: 30% better measurability of asymmetry possible