Polarized positrons with the E-166 Experiment

Ralph Dollan Humboldt University, Berlin

On behalf of the E-166 collaboration

Outline

- The goal of E-166
- The helical undulator
- Photon transmission polarimetry
- The E-166 setup
- Data taking
- First results on photon and positron asymmetries

E-166

- Demonstration experiment to proof the possibility, to produce polarized positrons using a helical undulator
- Collaboration of >50 people from 17 Institutions from 3 continents
- In the final focus test beam (FFTB) at SLAC with ~50 GeV (unpolarized) electrons
- 1 m long helical undulator produces circular polarized photons
- Conversion of photons to positrons in thin W-target
- Measurement of polarization of photons and positrons by Photon transmission method

E-166

- Demonstration experiment to proof the possibility, to produce polarized positrons using a helical undulator
- Collaboration of >50 people from 3 continents
- In the final focus test beam (FFTB) at SLAC with ~50 GeV (unpolarized) electrons
- 1 m long helical undulator produces circular polarized photons
- Conversion of photons to positrons in thin W-target
- Measurement of polarization of photons and positrons by Photon transmission method

Parameter	Value
Period λ_u	2.4mm
On axis field	0.76 T
K factor	0.17
$E_0 = \omega h$ (Energy cut-off 1 st harmonic)	9.6 MeV (50GeV e- beam)
Feeding current	$\sim 2 \text{ kA}$
Rate	up to 30 Hz
Heating/pulse	~3 degC

r_u Undulator aperture 0.88 mm

 $\frac{K - \text{ factor (Undulator strength)}}{K} = \frac{eH\lambda_u}{2\pi mc^2} \cong 93.4H[T]\lambda_u[m]$

The average photon polarization depends on the angular photon selection (K factor) and also on the quality of the photon collimation (before the conversion target).

First harmonic Energy cut-off

$$E_0 \approx \frac{2\gamma^2 hc}{\lambda_u}$$

Photon intensity - inverse proportional to the undulator aperture.

15/11/05

R. Dollan

Photon Energy and Polarization

The Positron production target

Production efficiency

15/11/05

R. Dollan

1

Expected Polarization

Expected positron polarization vs. positron energy

15/11/05

)5

R. Dollan

Photon transmission polarimetry

Transmission:

$$T(L) = e^{-nL(\sigma_{phot} + \sigma_{pair} + \sigma_{comp0})} e^{\pm nLP_{\gamma}P_{e}\sigma_{pol}}$$

Asymmetry:

$$\delta(L) = \frac{T^+ - T^-}{T^+ + T^-} \approx nLP_e P_{\gamma} \sigma_{Pol}$$

By knowing $Pe \Rightarrow P_{\gamma}$ can be calculated:

$$P_{\gamma} = \frac{\delta}{nL\sigma_{pol}P_e} = \frac{\delta}{A_{\gamma}P_e}$$

$$E166 \text{ measures}$$

$$Asym = \frac{Sig(-) - Sig(+)}{Sig(-) + Sig(+)}$$

International Polarized Positron Collaboration

R. Dollan

Positron Analyzing Power

Positron Energy E _e + (MeV)	Positron Polarisation P _e + (%)	Positron Asymmetry δ (%)	Analyzing Power A _e + (%)
3	42	0.55	18.6
4	61	0.84	19.7
5	69	0.82	17.0
6	78	0.87	15.9
7	84	0.93	15.8
8	77	0.82	15.0
9	64	0.63	14.0
10	68	0.66	13.9

Expected asymmetries and analyzing power versus positron energy

G3 simulation based on the experimental setup of the proposal

V. Gharibyan

Most challenging task for E166 was to measure asymmetries ≤1% in the CsI - Calorimeter

15/11/05

R. Dollan

Measure the asymmetries

Positron Polarimetry is similar to the photon Polarimetry. In a reconversion target the positrons are reconverted via Bremsstahlung and anihilation into photons.

$$Asym = \frac{Sig(-) - Sig(+)}{Sig(-) + Sig(+)}$$

The asymmetry is measured by flipping the magnet polarity.

15/11/05

R. Dollan

E-166 in the FFTB

×

CUR.

R. Dollan

E166 setup in the FFTB

E166 setup in the FFTB

15/11/05

5

R. Dollan

The spectrometer

The Undulator setup

R. Dollan

Setup

Bending Magnets

Solenoid

Analyzing Magnet

Helical • Undulator

15/11/05

R. Dollan

Setup

15/11/05

R. Dollan

20

,†

e

The CSI-Calorimeter

3x3 CsI crystals in a brass housing

15/11/05

R. Dollan

The CsI-Calorimeter

Photo diodes

- every crystal is read out by 2 Si-PM's
- we are reading analog signals

05

R. Dollan

Data taking

- Original plan: two running periods in October 2004 and January 2005
- Accident at SLAC -> delay
- June 2005: first run of E-166
- September 2005: second run

Data taking

- Original plan: two running periods in October 2004 and January 2005
- Accident at SLAC -> delay
- June 2005: first run of E-166
- September 2005: second run

Data taking scheme:

- Beam energy 46.6 GeV
- 10 Hz beam
- Undulator at 10 Hz
- Every 2nd pulse undulator off time
- -> "undulator on"-event followed by "undulator off"-event

Data taking

Collected positron data

Spectrometer set for	No. of beam pulses collected
5.6 MeV	2.0 *10 ⁵
5.2 MeV	3.1 *10 ⁶
3.7 MeV	1.2 *10 ⁶
4.5 MeV	1.2 *10 ⁶
6.0 MeV	1.2 *106
6.7 MeV	1.0 *10 ⁶

Combined June- and September run

15/11/05

R. Dollan

How we obtain the asymmetries

OLDT.

- substract backgroundfrom signalevents
- average over certain bg-range

Е

- 166

International Polarized Positron Collaboration

- test statistical methods with toy-monte carlo
- calculate the asymmetry between the two magnetization states

10 MeV γ

~~~~

### The signals

# The signals after substracting the background for different methods







50 GeV e E - 166

15/11/05

R. Dollan

## Photon Asymmetries

### preliminary

| Photon asymmetric<br>measured with 2 D | W. Bugg |                 |                     |
|----------------------------------------|---------|-----------------|---------------------|
| Photon Calorimete                      | r:      | 3.52 % ± 0.15 % |                     |
| Aerogel Counter                        | :       | 3.50 % ± 0.40 % | (stat. errors only) |





## Photon Asymmetries

### preliminary

| Photon asymmetries<br>measured with 2 Det | W. Bugg         |                     |
|-------------------------------------------|-----------------|---------------------|
| Photon Calorimeter :                      | 3.52 % ± 0.15 % |                     |
| Aerogel Counter :                         | 3.50 % ± 0.40 % | (stat. errors only) |

Expected photon asymmetries for 5 MeV eff. threshold:

| Beam Ener                   | gy [GeV] | Aerogel AG2 | W-Si Cal. GCAL                                                                                                   |   |
|-----------------------------|----------|-------------|------------------------------------------------------------------------------------------------------------------|---|
| 46.                         | 6        | 3.54        | 3.22 *)                                                                                                          |   |
| (G3 Simulat<br>V. Gharibyan | rion)    |             | *) energy weighted with calorimeter response function                                                            | ı |
|                             | 15/11/05 | R. Dollan   | 30<br><u>50 GeV e</u> <u>E - 166</u><br><u>10 MeV y</u><br><u>International Polarized Positron Collaboration</u> | F |

## Positron Asymmetries

#### preliminary

| Spectrometer<br>Current [A] | Positron<br>Energy [MeV] | Measured<br>Asymmetry<br>δ (%) | Asymmetry<br>error<br>(stat. only) |
|-----------------------------|--------------------------|--------------------------------|------------------------------------|
| 100                         | 3.7                      | 0.62                           | 0.15                               |
| 120                         | 4.5                      | 0.89                           | 0.07                               |
| 140                         | 5.2                      | 0.99                           | 0.05                               |
| 150                         | 5.6                      | 0.78                           | 0.10                               |
| 160                         | 6.0                      | 0.90                           | 0.07                               |
| 180                         | 6.7                      | 0.89                           | 0.09                               |

A. Schälicke

(stat. errors only)





#### **Positron Asymmetries**





50 GeV e E - 166

15/11/05

F

R. Dollan

## Summary

- E-166 was running and produced data with good quality
- The helical undulator was working
- We did a first analysis of the data and the asymmetries are in the expected range
- It still takes some time to come up with a number for the photon and positron polarization
- More simulation work has to be done
- The data analysis is ongoing...





R. Dollan