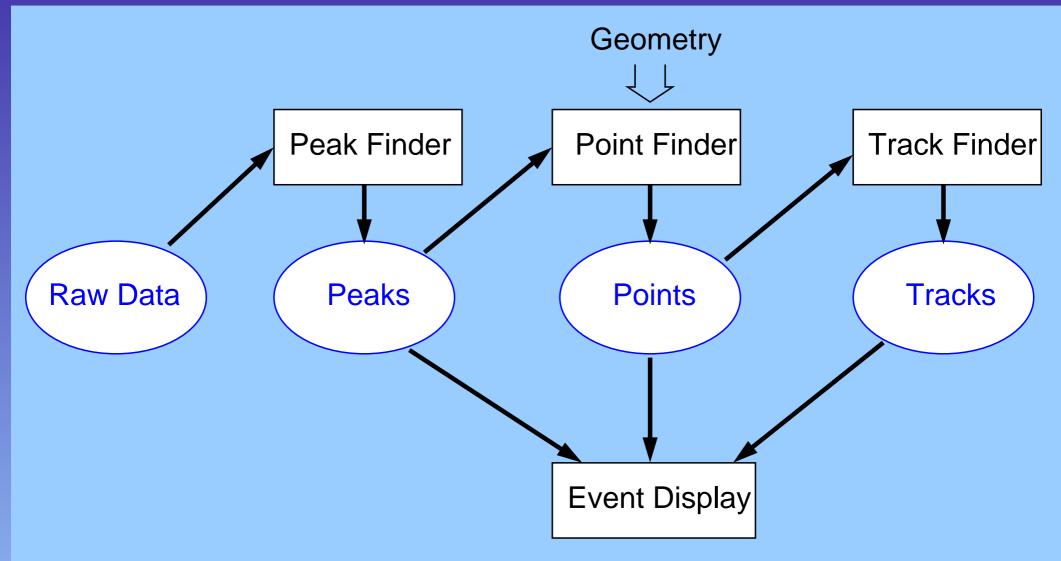


Reconstruction and Systematics of Resolution Measurements

Martin Killenberg Sven Lotze Joachim Mnich Astrid Münnich Stefan Roth Michael Weber

III. Physikalisches Institut B


ILC TPC Analysis Jamboree Hamburg, Feb. 13, 2006

Overview

Data Structure (1)

Peaks:

int ChannelNr

int SumQ [ADC counts]

int MaxQ [ADC counts]

float AvTime [time samples]

int PeakWidth [time samples]

Points:

float X [mm]

float Y [mm]

float Z [mm or μ s]

int Q [ADC counts]

float SigmaX (RMS or σ)

float SigmaZ (RMS)

int NPads

Similar to LCIO::TrackerPulse Similar to LCIO::TrackerHit

Converters to LCIO exist!

Data Structure (2)

Tracks:

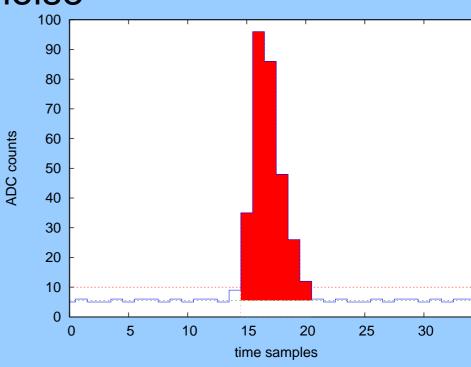
float a, b, c, d

int NTrackPoints float SigmaX float SigmaZ

array of points in track

Straight line defined by 4 parameters a, b, c, and d (slope and offset in xy and zy projections):

$$x = a \cdot y + b$$


$$z = c \cdot y + d$$

Peak Finder

Find peaks in raw data:

- When signal goes above threshold peak begins
- When signal falls below threshold peak has ended
- Mean Z is center of gravity
- Threshold at 5 σ of pedestal noise
- No pre or post samples

Point Finder

Calculate 3D points from the peaks:

- All signals on neighbouring pads at the same time coordinate (± mean peak width) are grouped to a cluster.
- Center of gravity or Gauss fit in X
- Y is center of the row
- Center of gravity in Z
- 1 empty pad allowed

Calculate straight track using linear regression.

Mixture of track road and track following method:

Use first and last point as seed

Track following method:

- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

X

X

- X
- X

X

Calculate straight track using linear regression.

Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

Track following method:

Calculate straight track using linear regression.

Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

Track following method:

Calculate straight track using linear regression.

Mixture of track road and track following method:

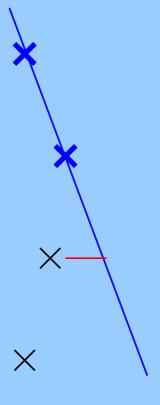
- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

Track following method:

Calculate straight track using linear regression.

Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks



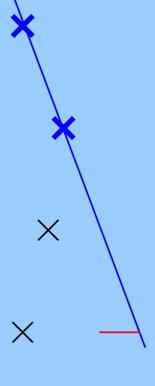
Calculate straight track using linear regression.

Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

Track following method:

X



Calculate straight track using linear regression.

Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

Track following method:

X

Calculate straight track using linear regression. Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

×

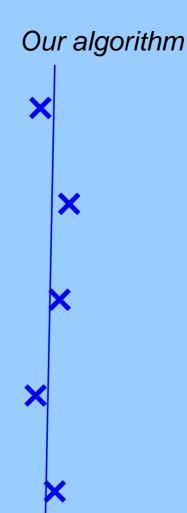
Our algorithm

Calculate straight track using linear regression. Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

Calculate straight track using linear regression. Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks


Our algorithm

Calculate straight track using linear regression. Mixture of track road and track following method:

- Use first and last point as seed
- Add points along track and redo regression after each added point
- One missing point allowed
- Minimum 5 points on track
- + simple
- can handle multiple tracks
- slow with many points and/or tracks

Resolution

Resolution of TPC

$$\sigma_X = \sqrt{\frac{\sum \Delta X_i^2}{n-2}}$$
 $\sigma_Z = \sqrt{\frac{\sum \Delta Z_i^2}{n-2}}$

 ΔX_i is distance from measured point to reconstructed track:

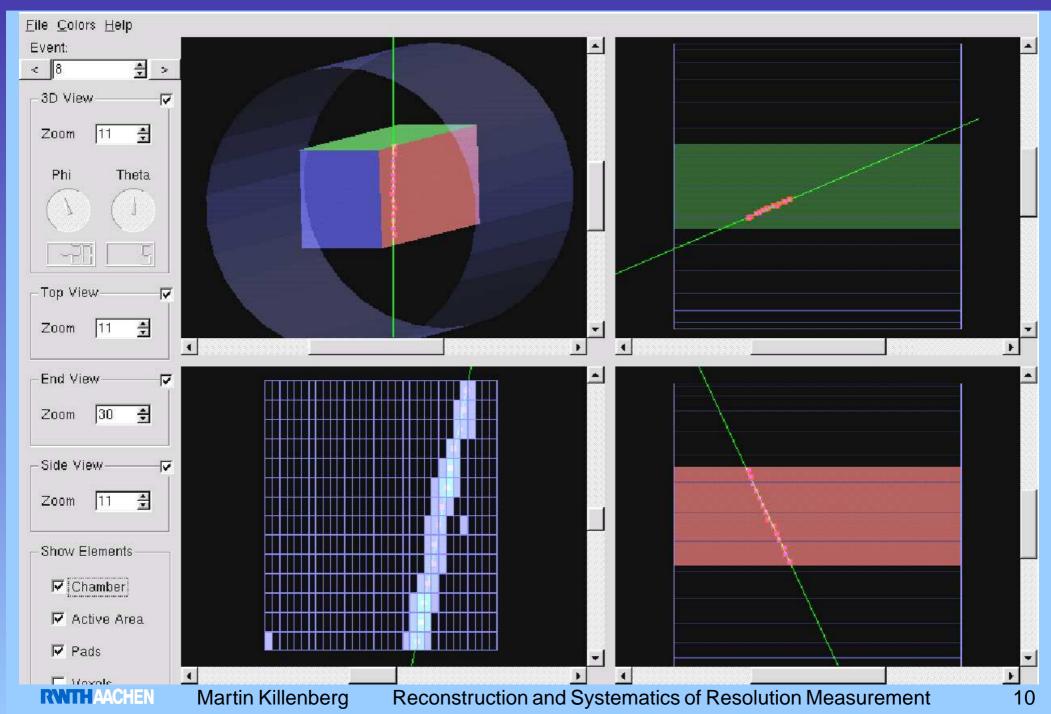
$$\Delta X_i = X_i - (a \cdot Y_i + b)$$

Resolution (2)

Resolution with hodoscope:

 ΔX_i is distance from measured point in TPC to track in hodoscope:

$$\Delta X_i = X_i - X_{hod}(Y_i)$$
$$= X_i - (a_{hod} \cdot Y_i + b_{hod})$$


- Fill all ΔX_i into histogram
- Resolution is RMS of histogram

Fitting a Gaussian to center of the peak gives "better" resolution, but does not take tracks in tails into account.

But these tracks are there!

Event Display

Analyse Test Beam Data

Resolution in dependence on:

- Gas mixture (TDR, Ar/CH₄ 95/5 and 90/10, Ar/CO₂ 98/2)
- Angle (0 to 4 degrees)
- Drift distance (0 to 26 cm)
- Particle energy (1 to 6 GeV positrons)
- Magnetic fi eld (4 T, TDR gas only)

No results yet!

Summary

Module	Properties	LCIO/MARLIN
Peak Finder	CoG	Yes
Point Finder	CoG or Gauss fit	No
Track Finder	Straight line only	Yes
	Linear regression	
Event Display	3D + projections	
	Pads	No
	Points	140
	Tracks	