Cluster Counting -Prospects and Problems

- Status + Prospects
- Efficiency/Purity
- Systematics
- Particle Separation Power
- The Way to Go

Present Status

Both GEMs + MediPix and MicroMegas + MediPix set-ups have demonstrated feasibility of single electron detection

GEMs

- suffer from diffusion in between GEM foils
 - broadens distribution on MediPix, large blobs
- need high total gas gain and low thresholds
 - limited sensitivity to single electrons, mainly sensitive to multi-electron clusters
 - cluster detection efficiency ~30%
- rubust operation

MicroMegas

- low diffusion
 - small blobs
- works with higher thresholds
 - efficiency for single electron detection ~90%
- critical HV operation, so far limited lifetime of MediPix

At the ILC?

- ...it might look like that...
 - → 100 GeV muon, B = 4 T, TESLA-TDR gas, 100 cm drift

identical events: same generated primary clusters/electrons

Prospects

- Expected dE/dx resolution for TESLA-TPC (TDR) ~4.3%
 - classical charge measurement
 - optimal: 200-240 samples with 5-6 mm sampling width
 - 70% truncated mean
- What can we expect from cluster counting?
 - → with 120 cm track length and ~30 clusters/cm
 - -> ~3600 clusters and ~10000 electrons per track
 - number of clusters is Poisson distributed (that's nice!)
 - this is what we want to measure by cluster counting
 - number of electrons (including secondary electrons) is Landau distributed (that's bad!)
 - this is what we measure by classical charge measurement or by counting electrons
 - **→** 3600 clusters -> 1.7% "dN/dx" error with perfect cluster counting
 - ~2.5 x better than by classical charge measurement
- But what can be really achieved?

Software

- MicroMegas can detect single electrons with high efficiency,
 GEMs can see ~clusters with lower efficiency (further optimizations might be possible)
 - hardware ~ok
 - what needs to be done to perform real cluster counting?
- SOFTWARE cluster finding algorithms are urgently needed!
 - MicroMegas
 - assign individual electrons to clusters
 - → **GEMs**
 - resolve close-by clusters (blobs)
- Time information may help (when TimePix becomes available)
 - but probably longitudinal diffusion too large to provide useful information(?)

Efficiency and Purity

- GEM/MicroMegas + MediPix system for cluster counting will be not perfect
 - efficiency < 100%, not all clusters will be found/counted
 - purity < 100%, some mis-identification: multi-electron cluster counted as two or more individual clusters, two separate clusters counted as a single one
- Effect of lower efficiency can be estimated
 - 30% efficiency (100% purity)
 -> 3% dN/dx resolution (still a good number)
- Influence of limited purity less clear
 - mixture of Poisson and Landau distributions, statistically more difficult to predict

Systematics

- Systematics could be the killer for cluster counting
 - Number of detected clusters sesitive to MediPix threshold
 - GEMs has larger threshold dependence (because of lower threshold)
 - Stable, constant threshold probably managable
 - Can we keep threshold stable with time/temperature etc.?
 - Efficiency/purity depends on primary cluster density
 - what we want to measure!

Particle Separation Power

After all, it's not the dE/dx resolution that counts but the Particle Separation Power

Separation of two particle species in dN/dx in units of the dN/dx resolution

$$separation power = \frac{separation}{resolution}$$

this is the relevant plot for physics analysis

The Way to Go

- We need to make proof of principle for cluster counting
- Software
 - Develop clever cluster finding algorithms
 - requirements for GEMs and MicroMegas somewhat different
 - Detailed simulation (including delta-electron treatment) and performance study of longer tracks (120 cm) with GEM/MicroMegas + MediPix
- Hardware
 - → GEMs
 - try to increase efficiency(sensitivity) -> reduce difusion
 - MicroMegas
 - improve operational stability
 - Test beam studies with sufficient MediPix to measure at least 15 – 20 cm long tracks
 - expected dN/dx resolution with perfect cluster counting
 equivalent to dE/dx resolution with 120 cm long tracks