Analysis of test beam & cosmic ray data taken by GEM or MWPC equipped prototype TPC

Katsumasa Ikematsu (DESY)

KEK - U. of Tsukuba - TUAT - Kogakuin U. - Kinki U. - Hiroshima U. -Saga U. - Mindanao State U. - DESY - MPI TPC collaboration

> ILC TPC Analysis Jamboree 15 February, 2006 @DESY Hamburg

First of all,

- On the first day of this workshop I learned a lot of methods and techniques concerning the track reconstruction and resolution measurement from the various group.
 - ♦ Comes up with new idea
 - ✦ Improve our analysis and results ("numbers")
- In this talk, I intend to present not numbers but current our understandings of the prototype-TPC behavior.
 - ✦ Pad response analysis -> Z-dep of charge spread on pads
 - Comparison with Magboltz for gas property (C_D)
 - Transverse spatial resolution analysis -> Z-dep of sigma_x
 - Difference of B-field, gas, track angle & gas amplification device

Facilities for Beam/CR tests

• Superconducting solenoid & KEK-12GeV PS (π 2) for beam tests

 Superconducting solenoids at DESY and KEK-Cryogenic Center for cosmic-ray tests

Readout scheme & data sets

Gas amp. dev	GEM				MWPC				
Features	Triple GEM (Standard CERN) 1.5 mm transfer & 1 mm induction gap			+ resistive anode	1 mm anode-cathode thin gap 2 mm anode-wire spacing				
Pad geom. [mm] Width (pitch) x Length (pitch)	1.17 (1.27) x 6 (6.3) staggered		2 (2.3) x 6 (6.3)	2 (2.3) x 6 (6.3)	2 (2.3) x 6 (6.3)				
B-field [T]	0T	1T	1T	1T	ОТ	1T	0 T	1T	4T
Beam/CR	Beam		CR	Beam	Beam		CR		
Gas	P5 (100V/cm)	P5 (100V/cm), P5 (50V/cm), TDR	TDR	P5 (50V/cm)	TDR				

MicroMEGAS KEK test beam data -> Previous talk in detail

Pad response analysis

Method: Charge fraction vs X_track - X_pad-center

MWPC (1T, TDR, 2.3mm pitch) GEM (1T, TDR, 2.3mm pitch) GEM (1T, P5, 1.27mm pitch)

- + Plot Q_i/Q_{tot} against (X_{track} $X_{pad-center}$) for different drift region
- Reject single & double pad hits for pad response analysis
- Divide the plot into different X-Slices and fit each slice with a gaussian
- ✦ Plot the sigma as a function of drift length

Z-dep of pad response

• GEM, 1T, P5(100V/cm), 1.27mm pitch for $N_{bin} = 15$

Z-dep of pad response width

Experiment (Sigma_PR vs Z) Magboltz (C_D vs E_drift)

X-resol (GEM, 1T, P5 & TDR)

• GEM voltage was adjusted to get same pulse height

▶ N_eff ~ 27 (P5), 30 (TDR)

Understanding of sigma_x0

• If width of avalanche can be ignored (PRF = δ -function), $\sigma_{x0}^2 \sim 1/N_{eff} * (w^2/12)$ $\sim 67 \ \mu m (N_{eff} = 30)$

~ 71 μm (Neff = 27)

In the case of GEM, PRF seems to be not δ-function; $\sigma_{x0}^2 < 1/N_{eff} * (w^2/12)$

• σ_{x0} can be calculated from PRF, but PRF of GEM is unknown!

• To obtain deeper understanding of σ_{x0} , shape & width of PRF should be estimated by dedicated experiment and/or realistic MC calculation.

X-resol (GEM, 1T, P5, $\phi=0\&10$)

- sigma_0 of phi = 10 deg data is significantly larger because of angular pad effect.
- diffusion term is comprable -> effect of phi-dependence is negligible for x-resolution at long drift distances

PH-dep of sigma_x0 (1T, TDR, GEM & MWPC)

GEM: 1 mm staggered, MWPC: 2 mm non-stagg. pad (1T, TDR) S/N ratio was small in the case of MWPC readout -> large sigma_0

X-resol (MWPC, TDR, 4T & 1T)

 In the case of MWPC, sigma_x0 get worth due to
ExB effect at higher magnetic field

Summary

- Performance studies of prototype TPC with triple GEM or MWPC were performed using test beam and cosmic ray.
- Transverse diffusion and spatial resolution were measured as a function of drift distance up to 26 cm.
- Diffusion constants were found to be consistent with those given by Magboltz simulation.
- To obtain deeper understanding of sigma_x0 for GEM, shape and width of PRF of GEM should be determined.
- "Ultimate" MWPC readout may also work, but with poorer granularity and larger ExB effect.
- We accumulated a lot of experiences and understandings for the prototype TPC toward the consolidation phase.