

Simulation Studies for a GEM-based TPC

Astrid Münnich

Martin Killenberg Sven Lotze Joachim Mnich Stefan Roth Michael Weber

III. Physikalisches Institut B

ILC TPC Analysis Jamboree 13.2. - 15.2. DESY Hamburg

Astrid Münnich

Simulation Studies for a GEM-based TPC

1

Simulation Studies

4 Modules:

- 1. Primary ionisation
- 2. Drift of electrons
- 3. Gas amplification with GEMs
- 4. Electronics (shaper, ADC)

Goals: Study influence on the spatial resolution of a TPC of

- Electric and magnetic fields
- GEM settings
- Pad response, pad geometry
- Ion backdrift

Creating Primary Ionisation

Mean number of clusters → Distance between clusters from exponential distribution with this mean value

Probability for number of electrons per cluster → Choose randomly according to distribution

Creating a Track

- Randomly choose distance to next cluster
- Choose # of e^- in this cluster
- 3D information possible
- B fields possible

Simulation Studies for a GEM-based TPC

Drifting Electrons

Parametrise gas properties simulated with MAGBOLTZ

Dice coordinates after drifting according to longitudinal and transverse diffusion

Astrid Münnich

RNTHAACHEN

Amplification with GEMs (1)

From measurements:

- Parametrisation of charge transfer in triple GEM structure: collection, gain, extraction
- Charge broadening

 only due to diffusion
 between GEMs
 → Simulate diffusion
 with Magboltz

Amplification with GEMs (2)

- Calculate number of secondary e⁻ from charge transfer combined with binomial statistics
- Integrate over 2D gaussian
 with sigma of charge cloud to get charge on pads
 → Voxel information:
 charge on channel c
 at time t

Astrid Münnich

Electronics: Shaping and ADC

- Determine center of gravity of charge in time
- Apply shaping function (Gaussian at the moment)
- Fill electrons into time bins
- Normalise charge with ADC range
- Integrate charge for every ADC bin

Astrid Münnich

Inputs for Simulation

RNTHAACHEN

Astrid Münnich

Simulation Studies for a GEM-based TPC

Gain Factor

Mean gain for one GEM from charge transfer parametrisation to high. To match charge spectrum from measurement: Decrease it by factor to account for temperature difference.

Astrid Münnich

RNTHAACHEN

First Comparision to Measurement

$1.27 \times 6.985 \text{ mm}^2$ Pads, TDR Gas, 0T, DESY Testbeam

Conclusion

Advantages:

- Simulation independent from big simulation packages
- Amplification with GEMs (accounts for different settings)
- Magnetic fields and 3D tracks possible
- Many input parameters for systematic studies

Limitation:

No spatial propagation of δ -electrons during primary ionisation

Outlook:

- Verification of simulation with testbeam data
- Systematic studies for ILC TPC