Reconstruction methods for the PANDA TPC

Quirin Weitzel

Physics Department E18 Technische Universität München

ILC TPC Analysis Jamboree, February 2006

1 The PANDA experiment

- Physics objectives
- Detector layout
- Continuous sampling DAQ concept

2 The PANDA TPC

3 TPC online reconstruction

- Event mixing
- Software tools
- Event deconvolution
- Integration of the TPC into the DAQ

The **PANDA** experiment

PANDA: Antiproton Annihilations at Darmstadt

- Facility for Antiproton and Ion Research (FAIR), GSI, Darmstadt, Germany
- High Energy Storage Ring (HESR)
- Antiproton beam in the range 1 GeV to 15 GeV
- Debunched beam high duty cycle
- Internal proton target (pellet / cluster gas jet) or nuclear targets
- $2 \cdot 10^7 \ \bar{p}p$ annihilations per second
- TDR in preparation for 2008
- First physics data expected in 2013

The goal of PANDA is to perform precision measurements on the following topics:

- Charmonium spectroscopy
- Search for gluonic excitations
- Charm in nuclei
- Hypernuclear physics
- Open charm physics

Prerequisites for precision:

- Low systematic errors
 - Good beam quality
 - Powerful detector system
- High statistics
 - High interaction rates
 - Study different channels simultanuously

The PANDA detector

PANDA is designed as a multipurpose detector, capable of exclusive measurements

Requirements on central tracker

- Almost 4π coverage, $\sim 1\%~X_0$
- $\sigma_{r,\phi} \sim 150~\mu{
 m m}$, $\sigma_z < 1~{
 m cm}$
- ullet Momentum resolution of $\sim 1\%$
- TPC offers PID below 1 GeV

- Fixed target geometry
- Large acceptance (nearly 4π)
- Target spectrometer (2 T superconducting solenoid)
- Forward spectrometer (2 Tm dipole magnet)
- Tracking system: silicon vertex detector, central tracking chamber (STT or TPC), forward tracking chambers
- Particle ID: Cherenkov detectors (DIRC, RICH)
- High precision, high granularity electromagnetic calorimetry

The PANDA detector

PANDA is designed as a multipurpose detector, capable of exclusive measurements

Requirements on central tracker

- Almost 4 π coverage, $\sim 1\%~X_0$
- $\sigma_{r,\phi} \sim 150~\mu{
 m m}$, $\sigma_z < 1~{
 m cm}$
- \bullet Momentum resolution of $\sim 1\%$
- TPC offers PID below 1 GeV

- Fixed target geometry
- Large acceptance (nearly 4π)
- Target spectrometer (2 T superconducting solenoid)
- Forward spectrometer (2 Tm dipole magnet)
- Tracking system: silicon vertex detector, central tracking chamber (STT or TPC), forward tracking chambers
- Particle ID: Cherenkov detectors (DIRC, RICH)
- High precision, high granularity electromagnetic calorimetry

• High annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$

- Study several physics channels in parallel
- Complex event signatures
- Many different contributing subdetectors
- No hardware trigger
- Self triggering frontend electronics
- Synchronized by global time distribution system
- ullet \Rightarrow very high raw data rate (up to ~ 1 TB/s, zero suppressed)
- Preprocessing on the frontend level
 - Feature extraction
 - Data compression
- Staged computing farms
 - Event building
 - Pattern recognition
 - Flexible event selection
- Design values:
 - Input data rate after preprocessing ~ 40 GB/s
 - Rate to disk 200 MB/s

- High annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$
- Study several physics channels in parallel
- Complex event signatures
- Many different contributing subdetectors
- No hardware trigger
- Self triggering frontend electronics
- Synchronized by global time distribution system
- ullet \Rightarrow very high raw data rate (up to ~ 1 TB/s, zero suppressed)
- Preprocessing on the frontend level
 - Feature extraction
 - Data compression
- Staged computing farms
 - Event building
 - Pattern recognition
 - Flexible event selection
- Design values:
 - Input data rate after preprocessing ~ 40 GB/s
 - Rate to disk 200 MB/s

- High annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$
- Study several physics channels in parallel
- Complex event signatures
- Many different contributing subdetectors
- No hardware trigger
- Self triggering frontend electronics
- Synchronized by global time distribution system
- ullet \Rightarrow very high raw data rate (up to ~ 1 TB/s, zero suppressed)
- Preprocessing on the frontend level
 - Feature extraction
 - Data compression
- Staged computing farms
 - Event building
 - Pattern recognition
 - Flexible event selection
- Design values:
 - Input data rate after preprocessing ~ 40 GB/s
 - Rate to disk 200 MB/s

- High annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$
- Study several physics channels in parallel
- Complex event signatures
- Many different contributing subdetectors
- No hardware trigger
- Self triggering frontend electronics
- Synchronized by global time distribution system
- ullet \Rightarrow very high raw data rate (up to ~ 1 TB/s, zero suppressed)
- Preprocessing on the frontend level
 - Feature extraction
 - Data compression
- Staged computing farms
 - Event building
 - Pattern recognition
 - Flexible event selection
- Design values:
 - Input data rate after preprocessing ~ 40 GB/s
 - Rate to disk 200 MB/s

- High annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$
- Study several physics channels in parallel
- Complex event signatures
- Many different contributing subdetectors
- No hardware trigger
- Self triggering frontend electronics
- Synchronized by global time distribution system
- \Rightarrow very high raw data rate (up to ~ 1 TB/s, zero suppressed)
- Preprocessing on the frontend level
 - Feature extraction
 - Data compression
- Staged computing farms
 - Event building
 - Pattern recognition
 - Flexible event selection
- Design values:
 - Input data rate after preprocessing ~ 40 GB/s
 - Rate to disk 200 MB/s

- High annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$
- Study several physics channels in parallel
- Complex event signatures
- Many different contributing subdetectors
- No hardware trigger
- Self triggering frontend electronics
- Synchronized by global time distribution system
- ullet \Rightarrow very high raw data rate (up to ~ 1 TB/s, zero suppressed)
- Preprocessing on the frontend level
 - Feature extraction
 - Data compression
- Staged computing farms
 - Event building
 - Pattern recognition
 - Flexible event selection
- Design values:
 - Input data rate after preprocessing ~ 40 GB/s
 - Rate to disk 200 MB/s

- High annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$
- Study several physics channels in parallel
- Complex event signatures
- Many different contributing subdetectors
- No hardware trigger
- Self triggering frontend electronics
- Synchronized by global time distribution system
- ullet \Rightarrow very high raw data rate (up to ~ 1 TB/s, zero suppressed)
- Preprocessing on the frontend level
 - Feature extraction
 - Data compression
- Staged computing farms
 - Event building
 - Pattern recognition
 - Flexible event selection
- Design values:
 - Input data rate after preprocessing \sim 40 GB/s
 - Rate to disk 200 MB/s

- High annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$
- Study several physics channels in parallel
- Complex event signatures
- Many different contributing subdetectors
- No hardware trigger
- Self triggering frontend electronics
- Synchronized by global time distribution system
- $\bullet\,\Rightarrow$ very high raw data rate (up to ~ 1 TB/s, zero suppressed)
- Preprocessing on the frontend level
 - Feature extraction
 - Data compression
- Staged computing farms
 - Event building
 - Pattern recognition
 - Flexible event selection
- Design values:
 - \blacktriangleright Input data rate after preprocessing \sim 40 GB/s
 - Rate to disk 200 MB/s

The PANDA TPC

Continuously running time projection chamber with GEM readout

Continuous mode:

- No external trigger
- No gating possible

Coordinates:

- (x, y) from pads
- drift time $t \Rightarrow z$
- $z = t \cdot v_{drift}$

Parameters of the PANDA TPC (reference design)

- Radius: 15 cm to 42 cm
- \bullet Position: -40 to +110 cm from IP
- Driftlength: 1.5 m $\hat{=}$ 55 μ s

- E-field: 400 V/cm
- Gas: Ne/CO₂ (90/10)
- Pads: $2 \times 2 \text{ mm}^2 \rightarrow 100\,000 \text{ ch.}$

Continuously running time projection chamber

Parameters of the PANDA TPC (reference design)

- Radius: 15 cm to 42 cm
- Position: -40 to +110 cm from IP
- Driftlength: 1.5 m $\hat{=}$ 55 μ s

- *E*-field: 400 V/cm
- Gas: Ne/CO₂ (90/10)
- Pads: $2 \times 2 \text{ mm}^2 \rightarrow 100\,000 \text{ ch}.$

Continuously running time projection chamber

Key challenges

- $\bullet~$ Continuous operation $\rightarrow~$ built-up of space charge inside drift volume
- Raw data rates up to $1 \text{ TB/s} \rightarrow \text{online data compression (e.g. hit trains)}$
- Event mixing \rightarrow online reconstruction necessary

TPC online reconstruction

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)
- Drift length: 1.5 m $\hat{=}$ 55 μ s

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)
- Drift length: 1.5 m $\hat{=}$ 55 μ s
- Arrival times of electrons from one event: inside 55 μ s time-window

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)
- Drift length: 1.5 m $\hat{=}$ 55 μ s
- Arrival times of electrons from one event: inside 55 μ s time-window
- Inside one drift time: up to ~ 1000 events

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)
- Drift length: 1.5 m $\hat{=}$ 55 μ s
- Arrival times of electrons from one event: inside 55 μ s time-window
- Inside one drift time: up to ~ 1000 events
- Continuous beam continuous data stream from TPC
- Signals from several events arriving at the same time

Event mixing in the TPC - breaking the event paradigm

Why do we have to reconstruct the TPC online?

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)
- Drift length: 1.5 m $\hat{=}$ 55 μ s
- Arrival times of electrons from one event: inside 55 μ s time-window
- Inside one drift time: up to ~ 1000 events
- Continuous beam continuous data stream from TPC
- Signals from several events arriving at the same time

Event mixing in the TPC - breaking the event paradigm

Why do we have to reconstruct the TPC online?

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)
- Drift length: 1.5 m $\hat{=}$ 55 μ s
- Arrival times of electrons from one event: inside 55 μ s time-window
- Inside one drift time: up to ~ 1000 events
- Continuous beam continuous data stream from TPC
- Signals from several events arriving at the same time
- Events cannot be predefined by a hardware trigger

Event mixing in the TPC - breaking the event paradigm

Why do we have to reconstruct the TPC online?

The problem

- Annihilation rate: $2 \cdot 10^7 \text{ s}^{-1}$ average time between events: 50 ns
- ~ 5 charged tracks per event ($\bar{p}p$ annihilations)
- Drift length: 1.5 m $\hat{=}$ 55 μ s
- Arrival times of electrons from one event: inside 55 μ s time-window
- Inside one drift time: up to ~ 1000 events
- Continuous beam continuous data stream from TPC
- Signals from several events arriving at the same time
- Events cannot be predefined by a hardware trigger

Necessary steps:

- Work with a data stream
- Q Recognize individual tracks

O Define events

• Event mixing is one key challenge

- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

z-reconstruction

Maximum Lagran en Samanan
 Samanan Samanan
 Samanan Samanan
 Samanan Samanan
 Reconstruction
 Samanan Samanan

- Event mixing is one key challenge
- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

z-reconstruction

Maaaanee Ageneree farmer Alexandee Mark Ageneree far de Konne Maaaanee Maaaaaa

- Event mixing is one key challenge
- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

z-reconstruction

Maaaannes tagaar ee tanaar Aanaa Maan Maaannes ta to to tana Maaannaannaa Maaannaannaa

- Event mixing is one key challenge
- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

z-reconstruction

Meanning August en fannen Anne Marin Reconstruct Reconstruct

- Event mixing is one key challenge
- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

z-reconstruction

Maaanine dagaa ee Kanaa Agaal ee Kashi Kana Racanstrach Racanstrach

- Event mixing is one key challenge
- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

- Event mixing is one key challenge
- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

z-reconstruction

- Measure: t_{signal} = t_{arrival}
- ≥ *Z* = *L*drift * Vdrift
- $t_{
 m signal} = t_0 + t_{
 m drift}$
- Reconstruct:
 - $2 = t_{signal} \cdot t_{drift} = z + z$ with $z_0 = t_0 \cdot t_{drift}$

- Event mixing is one key challenge
- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

z-reconstruction

- Measure: t_{signal} = t_{arrival}
- Z = t_{drift} · V_{drift}
- $t_{signal} = t_0 + t_{drift}$
- Reconstruct:
 - $\hat{z} = t_{signal} \cdot v_{drift} = z + z_0$ with $z_0 = t_0 \cdot v_{drift}$
- t_0 or z_0 from other detectors

• Has to be simple (e.g. no fit possible)

Diais

• Center of gravity algorithm

Trackletfinder

Kalman filter (helix track model)

- Non iterative, local
- Estimates track parameters
- Tricky to start
- ALICE Internal Note 97-24

- Event mixing is one key challenge
- Heavy software development ongoing to show feasibility
- TPC simulations with GEANT4
- BaBar framework (event based)
- Event mixing → new processing structures: data streams
- Reco working on data stream:

z-reconstruction

- Measure: $t_{signal} = t_{arrival}$
- $z = t_{drift} \cdot v_{drift}$
- $t_{signal} = t_0 + t_{drift}$
- Reconstruct:

 $\hat{z} = t_{\text{signal}} \cdot v_{\text{drift}} = z + z_0$ with $z_0 = t_0 \cdot v_{\text{drift}}$

• t_0 or z_0 from other detectors

Definition: event deconvolution

- Goal: find a set of tracks that belongs to one primary interaction
- Each such set is called an event

General procedure

- Reconstruct pieces of tracks
- Fast detectors: define event time
- TPC-tracks ^{comment}¹⁰ hits in fast detectors
- Problem: combinatorics

Use topology

- Target pointing
- Endcap penetration

Definition: event deconvolution

- Goal: find a set of tracks that belongs to one primary interaction
- Each such set is called an event

General procedure

- Reconstruct pieces of tracks
- Fast detectors: define event time
- TPC-tracks ^{connect to} hits in fast detectors
- Problem: combinatorics

Use topology

- Target pointing
- Endcap penetration

Definition: event deconvolution

- Goal: find a set of tracks that belongs to one primary interaction
- Each such set is called an event

General procedure

- Reconstruct pieces of tracks
- Fast detectors: define event time
- TPC-tracks ^{connect to} hits in fast detectors
- Problem: combinatorics!

Use topology

- Target pointing
- Endcap penetration

Definition: event deconvolution

- Goal: find a set of tracks that belongs to one primary interaction
- Each such set is called an event

Quirin Weitzel (TUM E18)

Definition: event deconvolution

- Goal: find a set of tracks that belongs to one primary interaction
- Each such set is called an event

Definition: event deconvolution

- Goal: find a set of tracks that belongs to one primary interaction
- Each such set is called an event

General procedure Reconstruct pieces of tracks Fast detectors: define event time TPC-tracks ^{connect to} hits in fast detectors Problem: combinatorics!

- Target pointing
 - Endcap penetration

Definition: event deconvolution

- Goal: find a set of tracks that belongs to one primary interaction
- Each such set is called an event

- Hypothesis: track coming from IP (z = 0)
- Extrapolate the helix to the z-axis
- \Rightarrow offset $z_0 \Rightarrow$ event time t_0
- Simulations show:
 - resolution of ~ 120 ns is feasible
 - reduction of combinatorics by a factor of 200 at full rate

- Hypothesis: track coming from IP (z = 0)
- Extrapolate the helix to the z-axis
- \Rightarrow offset $z_0 \Rightarrow$ event time t_0
- Simulations show:
 - resolution of ~ 120 ns is feasible
 - reduction of combinatorics by a factor of 200 at full rate

- Hypothesis: track coming from IP (z = 0)
- Extrapolate the helix to the z-axis
- \Rightarrow offset $z_0 \Rightarrow$ event time t_0
- Simulations show:
 - resolution of \sim 120 ns is feasible
 - reduction of combinatorics by a factor of 200 at full rate

200 events of 1 GeV pions at $\theta = 40^\circ$

- A lot of tracks go in forward direction (boost)
- Suppose a track is going through the forward endcap $(\theta < 20^{\circ})$
- Recognize track endpoint position
- Idea: fix the z of the last hit to the position of the endcap
- Achieved resolution: $\sim 280 \text{ ns}$

- A lot of tracks go in forward direction (boost)
- Suppose a track is going through the forward endcap $(\theta < 20^{\circ})$
- Recognize track endpoint position
- Idea: fix the z of the last hit to the position of the endcap
- Achieved resolution: $\sim 280 \text{ ns}$

- downstream endcap Target
- A lot of tracks go in forward direction (boost)
- Suppose a track is going through the forward endcap $(\theta < 20^\circ)$
- Recognize track endpoint position
- Idea: fix the z of the last hit to the position of the endcap
- Achieved resolution:

- A lot of tracks go in forward direction (boost)
- Suppose a track is going through the forward endcap $(\theta < 20^{\circ})$
- Recognize track endpoint position
- Idea: fix the z of the last hit to the position of the endcap
- Achieved resolution: $\sim 280 \text{ ns}$

500 events of 1 GeV pions at $heta=15^\circ$

Integration of the TPC into the DAQ

• For the event deconvolution tracks have to be found online in the TPC

- Preprocessing on dedicated computing nodes close to frontends
- Data reduction by:
 - ► Clustering of hit pads ⇒ data reduction by factor 10
 - Huffman coding of hit data on a track (hit trains)
 - Parameterization of track pieces in the TPC (tracklet reconstruction)
- Parallel processing of subvolumes of the TPC
- Full track information available (at least) at later levels of data filter
- TPC information can be used for event selection in the software trigger
 - Multiplicities
 - Momentum
 - Decay vertices of neutral particles (e.g Λ, K_s)

Integration of the TPC into the DAQ

- For the event deconvolution tracks have to be found online in the TPC
- Preprocessing on dedicated computing nodes close to frontends
- Data reduction by:
 - Clustering of hit pads \Rightarrow data reduction by factor 10
 - Huffman coding of hit data on a track (hit trains)
 - Parameterization of track pieces in the TPC (tracklet reconstruction)
- Parallel processing of subvolumes of the TPC
- Full track information available (at least) at later levels of data filter
- TPC information can be used for event selection in the software trigger
 - Multiplicities
 - Momentum
 - Decay vertices of neutral particles (e.g Λ, K_s)

- For the event deconvolution tracks have to be found online in the TPC
- Preprocessing on dedicated computing nodes close to frontends
- Data reduction by:
 - Clustering of hit pads \Rightarrow data reduction by factor 10
 - Huffman coding of hit data on a track (hit trains)
 - Parameterization of track pieces in the TPC (tracklet reconstruction)
- Parallel processing of subvolumes of the TPC
- Full track information available (at least) at later levels of data filter
- TPC information can be used for event selection in the software trigger
 - Multiplicities
 - Momentum
 - Decay vertices of neutral particles (e.g Λ, K_s)

- For the event deconvolution tracks have to be found online in the TPC
- Preprocessing on dedicated computing nodes close to frontends
- Data reduction by:
 - Clustering of hit pads \Rightarrow data reduction by factor 10
 - Huffman coding of hit data on a track (hit trains)
 - Parameterization of track pieces in the TPC (tracklet reconstruction)
- Parallel processing of subvolumes of the TPC
- Full track information available (at least) at later levels of data filter
- TPC information can be used for event selection in the software trigger
 - Multiplicities
 - Momentum
 - Decay vertices of neutral particles (e.g Λ, K_s)

- For the event deconvolution tracks have to be found online in the TPC
- Preprocessing on dedicated computing nodes close to frontends
- Data reduction by:
 - Clustering of hit pads \Rightarrow data reduction by factor 10
 - Huffman coding of hit data on a track (hit trains)
 - Parameterization of track pieces in the TPC (tracklet reconstruction)
- Parallel processing of subvolumes of the TPC
- Full track information available (at least) at later levels of data filter
- TPC information can be used for event selection in the software trigger
 - Multiplicities
 - Momentum
 - Decay vertices of neutral particles (e.g Λ, K_s)

Further problems and outlook

- How to deal with *B*-field and *E*-field inhomogeneities during the online reconstruction? What is the interplay with the space charge?
- How to keep accurately the dE/dx information for PID?
- How to deal with track crossings?

Thank you!