SiD Calorimetry – "Plan"

- ECal -- R. Frey
- HCal J. Repond

The R&D to date mostly addresses the "forefront" issues:

- barrel (and endcap) technologies
- PFAs

and (mostly) leaves out:

- forward calorimetry (→ BNL)
- barrel-endcap transition and other detector specific issues

The capabilities of the forward and endcap regions are crucial, e.g. the endcap at 1 TeV; SUSY capability in forward. As we start to get a grip on the 1st category, we need to figure out how to address the 2nd.

Underlying question:

Detector R&D defines the detector?

Or the concepts define the R&D?

Some SiD calorimeter issues...

- For the ECal, we seem to be on a viable (but not cheap) trajectory for the R&D.
 - What is optimal segmentation? What is optimal longitudinal structure?
 - Endcaps?
- What is the best HCal detector technology (within budget)?
- What is its segmentation?
 - Has 1 cm² been shown to outperform 3 cm²?
 - How many bits ?
- What is the radiator, longitudinal sampling, and depth?
- Our PFAs are now very close (1-2 months?) to providing some answers to the above, and perhaps 6 months (??) from addressing global detector parameters (B, R, Z). This is a major development!
- ⇒ Crucial to validate the simulation codes (G4) with beam tests.

SiD needs to ensure that (1) the detector configurations tested in beam are applicable to SiD; and (2) that the appropriate technologies are tested.

Now for the ECal...

M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller

Stanford Linear Accelerator Center

- J. Brau, R. Frey, D. Strom, M. Robinson U. Oregon
 - V. Radeka

 Brookhaven National Lab
 - B. Holbrook, R. Lander, M. Tripathi *UC Davis*
 - S. Adloff, F. Cadoux, J. Jacquemier, Y. Karyotakis LAPP Annecy

- KPiX readout chip
- downstream readout
- detector, cable development
- mechanical design and integration
- detector development
- readout electronics
- readout electronics
- cable development
- bump bonding
- mechanical design and integration

ECal R&D Plan (Outline)

2008?

All

determine EM response and resolution

(presume FNAL) – G4 validation

ECal module + HCal module in hadron beam

1st round prototype detector development and testing	2004-6	Oregon, funding: LCRD
KPiX 1st prototype chip delivery and bench testing	"today"- 3/06	SLAC
Develop and fab kapton readout cable	2006	UC Davis
Mount KPiX-p1 to detectors – test in lab (and in electron beam ?)	Late 2006	SLAC, Oregon, UC Davis
Design and order 2 nd round detectors (40) for full-depth ECal module	2006	Oregon, funding: DoE supp?
Develop and order KPiX-p2, concentrator boards	2006	SLAC
Develop and design mechanics for full-depth ECal module and FEA for SiD ECal	2006	Annecy
Mechanical and magnetic field tests	2006-7	All
Order full 1024 channel KPiX	2007 ?	SLAC
Fab. ECal module; test in electron beam:	2007	All