R&D Coordination for SiD First thoughts

Andy White University of Texas at Arlington LCWS05/SiD

Physics examples driving SiD design

Benchmarks Physics Reactions

The Physics Matrix

	$\delta p/p$	$\sigma_{IP}~(\mu { m m})$	$\frac{\delta E_{jet}}{E_{jet}}$	e-id	$\mu ext{-id}$	h-id	low- θ veto	$E_{missing}$	Q_{vtx}
$ee \to H\ell^+\ell^-$	$< 5 \times 10^{-5}$	-	-	Х	x	-	-	-	-
$H \to c\bar{c}/H \to b\bar{b}$	-	$< 10 \oplus 30$	x	-	-	-	-	-	-
$H \to \tau \tau / H \to b \bar{b}$	x	×	x	х	х	-	-	x	-
$ee \rightarrow HHZ$	x	$< 10 \oplus 30$	x	-	-	-	-	-	x
$\chi^0_1 \; {\sf DM} \; ilde{ au} - \chi$	x	-	-	х	х	-	< 10 mrad	-	-
$e^+e^- \rightarrow WW/ZZ\nu\nu$	x	$< 10 \oplus 30$	×	-	-	-	-	-	-
$ee \rightarrow ee$	-	-	-	х	-	-	×	х	-
$ee \to q\bar{q}$	-	×	×	х	х	х	-	-	x
Single Particle	×	Х	-	X	X	X	-	-	Х

M.Battaglia, LD meeting/Paris 2005

SiD *looks* like most collider detectors, but...

It has a much more integrated approach that other, previous detectors. So we must may attention to the subsystem interactions and compatible compatible technology choices, as well as doing the usual subsystem R&D

It also poses some significant challenges:

What is the true performance of a tracker with a small number of layers, but with very high point resolution (~10 μ m)?

What is the best calorimeter technology for Energy Flow and how well can we actually reconstruct jets/measure jet energies?

Integrated Detector Design - elements contributing to jet i.d./measurement

Integrated Detector Design

So now we must consider the detector as a *whole*.

Examples:

The tracker not only provides excellent momentum resolution (certainly good enough for replacing cluster energies in the calorimeter with track momenta), but *also* must:

- efficiently find all the charged tracks:

Any missed charged tracks will result in the corresponding energy clusters in the calorimeter being measured with lower energy resolution *and* a potentially larger confusion term.

So tracking efficiency affects calorimeter resolution

Integrated Detector Design

Energy leakage from the calorimeter:

- If a small percentage of energy is unmeasured in the calorimeter, energy is absorbed in the coil (~1 λ); how is the residual energy best treated in the tail-catcher (depth, granularity,...?)

Muon tracking through the calorimeter:

- If we have a digital calorimeter with MIP finding at ~1cm spatial resolution over 40 layers, how does this feed into the muon system design?

SiD R&D needs

All subsystems will require R&D:

- Vertex detector
- Si Tracker
- ECal
- Hcal
- Superconducting Coil
- Muon/Tail-catcher
- Forward systems ?

- Some R&D has already been done:

LCRD, UCLC, ADR, Lab. supported,...

Resources are limited - roughly FLAT LC
 Detector R&D budget over several years.

- FY2006 budget has significant increase for LC R&D...but mainly for accelerator development. Possible re-evaluation of the need to have detector development keep pace with the accelerator work??

SiD R&D needs - timescales

-It is now becoming clear(er) that:

- the LHC will start with an "engineering" run in late 2007, but detector elements will not be complete

- we should expect some initial perspective on the TeV energy scale from LHC by 2010

- any "go-ahead" for the LC will, at least partially, be tied to the LHC results

- it will take ~10 years from the "go-ahead" to build the accelerator and the detector(s).

So...we have ~5 years to build, test, and understand, subsystem technologies for the Linear Collider.

SiD R&D needs

In any plausible scenario, we will have to prioritize detector R&D:

- which are the most critical R&D tasks?
- which R&D tasks will take a long program to understand, and therefore should start early?
- what are the necessary sequences of subsystem development prior to combined tests?
- which subsystems must be tested in beam?

- which are the essential combined tests that we must perform as part of developing a baseline SiD design?

SiD R&D Coordination - Next Steps

- Survey what has been done so far
- Survey what is proposed for the next round

 Understand subsystem plans (which technologies, who is involved in SiD R&D, levels of effort, resources,...)

- Understand in the context of overall SiD design what is needed by when.

- Interact with WWS R&D Panel to understand what will be requested this year/beyond.

- Start now to develop SiD R&D plans - refine through the next few months/Snowmass

SiD R&D Coordination - fact finding

Need to establish -from WG leaders:

- what R&D is needed for subsystem
- what has been done so far is it good enough
- who is involved do you need more people
- what is planned in short term
- what is funded and how
- what is un-funded how much
- timescales for R&D components

- what are the critical R&D questions that must be answered before detector design choices can be made

(continued...)

SiD R&D Coordination - fact finding

- what can be deferred
- resources available, foreseen, needed but not available
- test beam needs
- interaction(s) with other subsystems
- combined beam tests
- any new ideas not yet heard from