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calorimeter requirements

• Must be ready to reconstruct new final states…
• which will include:

Multi-jet final states
• With or without beam constraint

Leptons
• including tau

Heavy quarks
Missing energy/mass
Combinations of these
(non-pointing) neutrals

• And in addition, we need to provide:
Bhabha recon.: x, E  (endcaps)
very far forward e- tags
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TESLA TDR

Brient, Calor2004



general (contd)

1. Charged particles in jets more 
precisely measured in tracker

2. Jet energy 64% charged (typ.)

Separate charged/neutrals in calor.
⇒ The “Particle Flow” paradigm

In this case, jet energy resolution (at 
the LC) will be dominated by 
pattern recognition (“confusion”).

And this resolution will be quite good, 
∼0.3 / √E  .

So the emphasis is on “imaging”:

• ECAL: dense, highly segmented
• HCAL: highly segmented (, dense)

H. Videau
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Standard SiD 
• ECal

Silicon – tungsten
20 x 5/7 X0  +  10 x 10/7 X0
16 mm2 pixels
1 mm  gaps

• HCal (digital)
RPCs, GEMs (, scint. tiles)
≈ 4 λ :  34 × 2 cm Fe  (W ?)
RPCs and GEMs: ≈ 1 cm2 “pixels”
RPCs: few mm gaps

Glass RPCs are the leading technology, but pursuing >1 
technology to address different potential concerns:

• cost
• reliability
• rate capability
• hit multiplicity
• ease of construction and assembly
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Si-W Concept – SiD version

30 or fewer long. samples
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Wafer and readout chip



SiD Si/W Features

• “Channel count” reduced by factor of 103

• Compact – thin gap ~ 1mm
Moliere radius 9mm → 13 mm

• Cost nearly independent of transverse 
segmentation

• Power cycling – only passive cooling 
required

• Dynamic range OK
• Readout at pixels:

Low capacitance
Good S/N

Current configuration:

• 5 mm pixels (16 mm2)

• 30 layers: 

20 x 5/7 X0 +    

10 x 10/7 X0
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Components

Tungsten
• Rolled 2.5mm

down to 1mm OK
• Very good quality 

< 30 µm variations
• 92.5% W alloy
• Pieces up to 1m long possible 8

Silicon
• Hamamatsu detectors (10)
• Compatible with design concept 

for LC ECal (pixel size, traces, 
bump-bonding pads, etc)

• Lab tests look fine



Electronics for a Cold LC
D. Freytag, V. Radeka, M. Breidenbach
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Glass RPCs

RPCs are…

simple, robust, cheap, quiet, well understood, reliable
adaptable to different requirements (TOF, high efficiency, large area…)

HV

Signal

Graphite

Resistive platesGas

Pick-up pads

Name Area 
[cm2]

# of gas 
gaps

# of glass
plates

Glass 
thickness [mm]

# of graphite 
layers

3 2

2

2

2

2

2

Air6 30 x 91 1 2 1.1 2 1.5 + 2.5

1

0

0

3

3

2

2

2

2

2

1

Surface 
resistivity [MΩ/□]

Air0 20 x 20 2 0.85 0.3

Air1 20 x 20 2 1.1 0.2

Air2 20 x 20 2 1.1 1.2

Air3 20 x 20 1 1.1 1.0

Air4 20 x 20 1 1.1 1.0 + 50

Air5 20 x 20 1 0.85 1.5 + 2.4

Air7 20 x 20 1 1.1 1.0

Air8 20 x 20 1 1.1 0

Air9 20 x 20 1 1.1 0
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Lei Xia’s
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Front-end ASIC
64 inputs with choice of input gains

RPCs (streamer and avalanche), GEMs…

Triggerless or triggered operation
100 ns clock cycle
Output: hit pattern and time stamp

ASIC performance specified 
in 41 page document
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GEMs

Key: producing cost-effective 
GEM foils in bulk (industry: 3M)
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HCalHCal Absorber: Steel or Tungsten ?    Absorber: Steel or Tungsten ?    (S. (S. MagillMagill))

SS W

14 more layers 30 more layers

60 cm into SS HCAL 42 cm into W HCAL
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Shower reconstruction by track extrapolationShower reconstruction by track extrapolation
S. Magill

ECAL HCAL
Mip reconstruction :

Extrapolate track through CAL 
layer-by-layer
Search for “Interaction Layer”
-> Clean region for photons 
(ECAL)

Shower reconstruction :
Define tubes for shower in ECAL, 
HCAL after IL
Optimize, iterating tubes in 
E,HCAL separately (E/p test)IL

track
shower
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PFA: not quite there yet, but good progress

Tracks+Photons+Neutral Clusters

Total Event Energy (GeV)

Sigma 1 = 3.2 GeV, 

Sigma 2 = 6.5 GeV

S. Magill



Simulation - organization
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• Clearly important to share progress and results 
• For now, co-opt (half of) the ALCPG calor. meetings
• Will need to re-visit this as participation expands



The Test Beam Program
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• Particle Flow will be tested and detectors optimized using full Monte 
Carlo simulations

• These Monte Carlos (ie Geant4) must be validated with test beam
A new regime: “Imaging” hadron (and em) calorimeters
Previous MC-cal comparisons not especially relevant
A new level of shower detail available for comparison to MC

⇒ The FNAL test beam MOU

• Hadron showers are spatially large ⇒ a large prototype is needed 
(with an ECal in front)

1 m3 , ∼4×105   HCal readout channels (30 ECal channels)
• This requires money (more than current LCRD/UCLC awards)

⇒ NSF MRI proposal: UT Arlington, Argonne, Oregon (960k$) 
Si/W ECal + RPC/GEM HCal



the test beam program (contd.)
G Mavromanolakis,, D. Ward

The CALICE HCal structure calls for 2cm steel absorber.

Need a 2nd configuration?  Tune MC to one, predict the 2nd.

Tungsten?
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FNAL-TM-2291
Test beam MOU

the test beam program (contd.)
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the test beam program (contd.)
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Possible schedule (Jose Repond) :

Also: ECAL US) technical test at SLAC… 2005 ?



Detector R&D involvement

RPC  R&D and test beam Argonne, Boston, Chicago, 
FNAL, Iowa

GEM R&D and test beam UT Arlington, Tsinghua, U. 
Washington

Scintillator Tiles R&D N. Illinois

Silicon - tungsten SLAC, Oregon, 
Brookhaven, Davis

Note: These are only the U.S.-based groups who have 
expressed a specific interest in SiD. In particular, the CALICE 
groups in Europe pursuing Si/W ECal and RPCs could be listed.
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Simulation involvement

Simulation infrastructure SLAC, N. Illinois

Algorithm dev.: photon finder SLAC, Iowa, Argonne

Algo. dev.: MIP tracking Iowa, N. Illinois, Kansas St

Algo. dev.: neutral hadron
clusterer

N. Illinois, Argonne, SLAC

Putting the pieces together: PFA Argonne, SLAC, 
UT Arlington
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Summary and Goals
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• Excellent progress on detector R&D 
RPCs for HCal “ready to go”
GEMs for HCal – more R&D needed
Si/W – first readout chips in few months
Scint. tile HCal – SiPM config., segmentation?

• Good simulation progress
Getting close to viable PFAs

Goals:
• Test beam program: validate simulations at unprecedented level of detail.

detailed shower measurements
Tune MC to this (then predict a 2nd config.?)

• Develop acceptable PFAs

⇒Optimize detector design using the tuned PFAs.
B, R, segmentation (trans,long), depth, etc

(Will we always need the full PFAs to make progress on detector 
optimization?)
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M. Iwasaki, 2000



Beam crossing time structure 

•Fast readouts: 
OK, no pileup

• pipeline

•bx live: 5 ×10-3
Cold
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Warm

•Pileup over 
bunch train

•Or fast timing

•bx live: 3 ×10-5

⇒ power pulse
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