

Progress on Tracking

Timeframe ~ 1 year

Marcel Demarteau Fermilab

for the Tracking Group

Current Tracking Group

- Brown University
 - Partridge
- Fermilab
 - Cooper, Demarteau, Hrycyk, Krempetz, Ang Lee, Milstene, Tkaczyk
- Kansas State University
 - Onoprienko, Von Toerne
- LPNHE-Paris
 - Augustin, Chapron, Imbault, Genat, Hung, Lebbollo, Kapusta, Rossel, Savoy-Navarro, Vincent
- Rutherford Laboratory
 - Damerell, Goldstein
- SLAC
 - Breidenbach, Jaros, Maruyama, Nelson, Wagner
- UC Santa Cruz
 - Schumm
- + people I forgot

About One Year Ago

- Use as a reference point ALCPG at SLAC in January 2004 and/or Paris workshop in 2004
- Look at the status of the design at that point in time
 - Statements and lists of issues are straight quotes

Tracker Layout '04

Tracker Layout Choice Un-simulated and Un-engineered

Fixed barrel length or barrel length increases with radius

M. Breidenbach

Slide 4

0

J. Jaros, ALCPG, Jan 2004

- Can SiD Tracker Pattern Recognize?
- What and how bad are real machine backgrounds? How robust must tracking be?
- Are SiD Tracking Deficiencies Significant?
 - Tracking of K^{0} 's and Λ 's
- Are SiD Tracking Strengths Significant?
 - little material in endcap, robust against machine performance
- Can realistic SiD Tracking Designs remain thin?
- Barrel Momenter or Barrel Tracker?
 - axial layers only, axial plus stereo?

Tracker Design

B. Cooper

Barrels

- Five barrels, measure Phi only
- Eighty-fold phi segmentation
- 10 cm z segmentation
- Barrel lengths increase with radius

Disks

- Five double-disks per end
- Measure R and Phi
- varying R segmentation
- Disk radii increase with Z

Tracker Design

B. Cooper

- First proposal at Victoria and refined since
 - Interplay between outer and inner tracker: servicing of vertex detector
 - Disks are separated into an outer radius and inner radius portion, with latter supported by the beam tube.
 - Allows for different technology for inner disks
 - Modifications to control projective geometry
- Significant consideration given to mechanical engineering issues
 - Support of disks from barrels
 - minimization of material budget
 - Iay-up of carbon fiber-rohacell support cylinders and disks and associated FEA's
- First pass at realistic material budget, based on design not optimized to control projective geometry
 - Material budget of ~0.8% X₀ plausible for realistic designs in the barrel region; improvements being studied
- Geometry, notably forward region, implemented in MC geometry definition
- Continuing evolution of the geometry
 - All possible suggestions are given serious thought in terms of mechanical layout

(10cm X 10cm)

Module Mounting Flange material: CF/PEEK

Module Design

Cable

material: 100um Kapton + Copper

Multi-sensor ladders also being considered

T. Nelson

Paris focusing on two designs:

- An all-Silicon tracking ensemble
- A combined TPC-Silicon envelope tracker (will ignore except for forward)

Tracker Design

- Point of focus is 'long ladder'
 - Developing assembly techniques
 - Have built 2nd prototype long ladder
 - readout by VA chip
 - Studying thermal management
- Forward region proposal
 - pixel and strip wheels
 - Cf support cylinder

A. Savoy-Navarro

Machine Tracker Interface

- Larger radius $\Delta R > +1$ mm,
- Shorter $\Delta Z \sim 1 \text{ cm}$
 - 500 GeV, B=5 Tesla, 20 mrad xing

Study of machine-, inner and outer tracker interface

 New vertex detector design with forward disks

B. Cooper

T. Maruyama

Tracker Readout

- Both Paris and UCSC developed elements of prototype Si ROC
 - Low noise preamplifiers, Long shaping time
 - Time measurement
 - Very low power dissipation
 - Digitization and sparsification
 - Power cycling
- Both UCSC and Paris received, or will shortly receive, first prototypes
 - UCSC
 - Agilent 0.5 μm, CMOS
 - 3 μs shaping-time for preamplifier
 - Time-over-threshold analog treatment
 - Dual-discriminator architecture
 - Paris
 - Only FE design in UMC 0.18 μm at Europractice (Leuven)
 - 16 ch +1 Preamp, Shaper, Sample & Hold, ADC Comparator
 - For 5 μ s shaping time, 50 pF detector load: simulated ENC = 690 e- ENC
 - Overall noise including I_{leak}, R_{bias} : 1060 e-
 - Power without power switching: 295 μW/channel
 - Bench tests to follow

J-F. Genat B. Schumm

 Eckhard: Calorimeter-based tracking and K0s/Lambda reconstruction would benefit from additional layers at larger radii (5 layers is a small number for our task)

- Tracker Layout Choice Un-simulated and Un-engineered
 - Serious mechanical engineering effort has started with currently a solid design
 - Is it the optimum design ?
 - Electrical engineering proceeding and prototyping started
 - ASIC's received by both UCSC and Paris VI for long shaping time
- Can SiD Tracker Pattern Recognize?
 - Sure: Pattern Recognition works if we can link VXD hits with barrel hits
 - Is that the only thing needed?
- What and how bad are real machine backgrounds? How robust must tracking be?
 - Machine detector interface issues start to be addressed, as are issues of servicing
- Are SiD Tracking Deficiencies Significant?
 - Tracking of K_s 's and Λ 's points towards the need for tiling and additional layers
 - This needs to be quantified
- Are SiD Tracking Strengths Significant?
 - Not addressed
- Can realistic SiD Tracking Designs remain thin?
 - Realistic material budget has been made, with currently about 0.8% X₀/layer feasible for barrel region. Potential for improvement. Forward region needs work.
- Barrel Momenter or Barrel Tracker?
 - Not addressed

- Simulation is area where effort is needed the most
 - Readout ganging
 - How long are readout sections?
 - Number of layers
 - How many barrels? How many disks?
 - How many stereo layers? Use of double-sided sensors?
 - Should all barrels have identical length?
 - **....**
- Can separate the simulation in two categories
 - Generic tracking
 - Pattern recognition, track finding efficiencies, impact parameter resolution
 - efficiency reconstructing long lived particles
 - Occupancies, p_T resolution, ...
 - With VXD or stand-alone
 - Physics benchmark
 - Take two or three benchmark physics processes and set list of minimum requirements:
 - p_T resolution
 - track finding efficiency
 - b-, charm separation
 - reconstructed physics quantities

· SiD · Prerequisites and Implementation

- Technology decision for small R, forward region
 - Should make an educated choice for technology now for simulations
 - Readout
 - Optical Drivers/receivers
 - Any cooling needed for readout
 - It doesn't need to be specific; characterization of material should be enough
 - Technology and support for both vertex and outer tracker disks for R < 20 cm?
 - Pixel detectors for the whole forward region ?
- Machine constraints and serviceability
 - Decide on beam pipe constraints such as cone angle and radius?
 - What would we like in terms of serviceability ? Current scheme adequate ?
- Implement in simulation
 - Believe that fast simulations should be adequate
 - Especially for optimization studies

- Plenty of activity on many fronts, both in US and in Europe
- Significant progress in the design of the tracker, especially given the fact that all people are only part-time on the project
 - Realistic mechanical design on hand
 - Electrical engineering proceeding
- Little progress made in simulation
 - Aurore, SiD meeting Feb. 2005: "... a dramatic need for simulation studies for optimizing / comparing detector designs & performances"
- Simulations are now critical; to make any significant progress, we need to bite the bullet on some design issues; decisions don't have to be correct as long as they are well reasoned
- Fast and flexible simulations should be adequate to establish conceptual design
- Explore integration of European simulation effort

 First pass at realistic material budget, based on design not optimized to control projective geometry

 Material budget of ~0.8% X₀ plausible for realistic designs in the barrel region; improvements being studied

Mechanical considerations

- Grounding
 - What sets the potential of carbon fiber surfaces relative to sensor ground?
 - For single-sensor modules
 - For multi-sensor modules
- Cabling
 - What are the cross-sectional dimensions of a cables?
 - How many cables are at the same R-phi?
 - For single-sensor modules, we think one bus cable per end
 - For multi-sensor modules, we think one cable per module
- Optical drivers / receivers
 - How much space is needed for these?
 - How much cooling is needed?
- Servicing
 - How important is it to be able to replace a sensor module?
 - Working assumption: essential during assembly
 - After operation?
 - What defines the "unit" to be removed / replaced?