

Report on the status of ATF2 ultra-low β_y^* optics

Vera Cilento, Renjun Yang, Fabien Plassard, Edu Marin, Andrii Pastushenko, Rogelio Tomás, Pierre Korysko and thanks to all ATF2 collaborators

Outline

Motivation

- > December 2017 Machine Tuning with ultra-low β_y^* optics
- > February 2018 Machine Tuning with ultra-low β_y^* optics
- Summary of May 2018 run
- Summary of November 2018 run
- Conclusions

Motivation

• The goal of the ultra-low β_y^* optics tuning at ATF2 is to demonstrate the feasibility of the Local scheme FFS at chromaticity ξ_y level comparable to CLIC.

	$oldsymbol{eta}_y^*$ [μ m]	$\sigma^{*}_{y,design}$ [nm]	<i>L</i> *[m]	$\xi_y (L^* / \beta_y^*)$
ILC	480	5.9	3.5/4.5	7300/9400
CLIC	70	1	3.5	50000
ATF2 nominal	100	37	1	10000
ATF2 half eta_y^* (w/ oct.)	50	25	1	20000
ATF2 ultra-low β_y^* (w/ oct.)	25	20	1	40000

• Decreasing β_y^* makes the FFS more sensitive to beam line imperfections, amplify contributions from higher order aberrations and wakefields.

Motivation

• The other goal of the ultra-low β_y^* study is to quantify the benefit on the beam size of using the pair of octupoles installed at ATF2 in November 2016.

• The ultra-low β_y^* optics requires the use of octupoles to reduce σ_y^* down to 20 nm in design.

• December 2017 operation was the first long tuning attempt using ultra-low β_y^* optics at ATF2 (64 hours of continuos tuning).

December 2017 Machine Tuning with ultra-low β_y^* optics • Matching of the $\beta_{x,y}^*$

- Optics matching by means of 2 quads in the EXT line (QD20X and QF21X), the 5 matching quads (QM16FF→QM11FF) and the FD (QF1FF and QD0FF).
- The target β_x^* is 100 mm \rightarrow final optics 25 β_x^* x 0.25 β_y^* to relax FD multipolar tolerances (comparable w/ CLIC).

December 2017 Machine Tuning with ultra-low β_y^* optics

• Matching of the $\beta_{x,y}^*$

• The initial optics from simulation model could not be implemented due to the strength of the QM14FF that was slightly above the power supply window of the magnet.

December 2017 Machine Tuning with ultra-low β_{γ}^* optics

• Matching of the $\beta_{x,y}^*$

• The ultra-low β_y^* optics was rematched \rightarrow several matching attemps needed and adjustement of the strength of the QF19X extraction quadrupole.

December 2017 Machine Tuning with ultra-low β_{γ}^* optics

• Matching of the $\beta_{x,y}^*$

- Without the multi-OTR we could not measure and correct the vertical emittance and the <x,y> coupling at the entrance of the FF line and could not obtain emittances and Twiss parameter at OTRoX, difficult for optics rematching → important limitation for tuning.
- The measurement of the vertical emittance was done in the DR $\rightarrow \epsilon_v$ = 12.9 pm.

December 2017 Machine Tuning with ultra-low β_{γ}^{*} optics

- β_{γ}^* was well matched to \approx 25 μ m (assuming the vertical emittance measured in the DR).
- β_x^* was measured of \approx 85 mm but a fitted ϵ_x^* twice the design value indicating that the scan was biased by large horizontal dispersion at the IP.
- The measured η_x^* was around 34 mm $\rightarrow \beta_x^*$ was smaller than measured.

December 2017 Machine Tuning with ultra-low β_{γ}^* optics

- Linear and Nonlinear knobs were applied iteratively and sextupoles strength changed according to the ultra-low β_y^* optics model.
- After 5 shifts (5 x 8 hours) of tuning, no clear modulation was found at 174 degree mode.
- The beam size could not be tuned below \approx 97 nm.
- It is difficult to observe the impact of the octupoles at 30 degree mode.

\circ Matching of the $\beta^*_{x,y}$

• For the second attempt the $25\beta_x^* \times 0.25\beta_y^*$ optics was re-optimized in simulation before the run to take into account the constraints from the matching quads. The quads changed are QF19X \rightarrow QF21X in the extraction line, the matching quads (QM16FF \rightarrow QM11FF) and the FD (QF1FF and QDoFF).

• The sextupoles were re-optimized for the new optics.

• Matching of the $\beta^*_{x,y}$

- The multi-OTR was still not available in February run.
- The measurement of the vertical emittance was done in the DR $\rightarrow \epsilon_{y}$ = 12.5 pm.

- Smaller β_y^* target (15µm) was needed to measure β_y^* of ~ 25µm but β_x^* was very consistent with the optics model and matched directly ~ 100 mm.
 - Residual dispersion was corrected from the fit of the quad scans \rightarrow the measured η_x^* was around 3 mm.

• In order to check that the QDoFF scan was not bias by <x,y> coupling which would lead to an overestimation of the measured divergence, a quick scan of the QS1X-QS2X difference knob was performed.

Tuning time reduced compared to Dec17 run due to multiple reasons: long correction of the very large background generated from the larger beam size along the FF; rematch of the Shintake laser tuning and retune of the optics after 4 shifts → QF1FF strength was not reset to its original value leading to a large increase of β^{*}_x.

- Despite the shorter tuning time and without applying 2nd order sextupole knobs or octupoles, the beam size could be squeezed rapidly and modulation could be observed at 174 degree mode.
- The minimum beam size measured at 174 degree mode was $\sigma_y^* = 64 \pm 2$ nm by applying only linear knobs \rightarrow improved optics and performance compared to Dec17 operation.

- Load the same optics used in February 2018 but with the advantage of measuring the emittance (multi-OTR was recovered) \rightarrow the time allocated for the ultra-low β_y^* study was too little to perform a complete machine tuning.
- The results only include the emittance measurements with multi-OTR and the twiss function evaluation at the IP (carbon wire) → preparation for next winter beam operations.
- Before moving to the multi-OTR emittance measurements, the orbit was corrected and the dispersion was reduced in the OTRs region to \pm 10mm in the vertical plane.
- The emittance measured was 23 \pm 4 pm \rightarrow <x,y> coupling correction to reduce this value.

 The <x,y> coupling correction is performed by scanning the strength of four skew quadrupoles (QK1X, QK2X, QK3X and QK4X) in the extraction line and by applying the Δ-knob with the vertical emittance measured by the multi-OTR system being a figure of merit.

• The value of the emittance at the entrance of the FFS after the $\langle x, y \rangle$ coupling correction was 19 \pm 6 pm.

Horizontal projected emittance parameters at first OTR

Horizontal projected emittance parameters at IP

sig	= 18.0492 +- 0.1702 um (7.1600)
sigp	= 71.1946 +- 26.0663 ur (179.5204)
beta	= 253.5226 +- 93.3960 mm (39.8952)
alpha	= 0.0046 +- 0.1085 (-0.0238)

Horizontal projected emittance parameters at waist

L = 0.0012 +- 0.0279 m beta = 253.5172 +- 93.1706 mm sig = 18.0491 +- 0.1715 um

Vertical projected emittance parameters at first OTR

= 1.2820 GeV energy ernit = 18.8733 +- 5.6629 pm emitn = 47.3495 +- 14.2072 nm emit*bmag = 19.1648 +- 6.1750 pm = 1.0154 +- 0.0323 (1.0000) bmad bmag cos = -0.1705 +- 0.0000 (0.0000) bmag_sin = 0.0336 +- 0.0000 (0.0000) beta = 5.2144 +- 0.8104 m (6.1903) alpha = 2.2042 +- 0.5053 (2.5763) chisg/N = 6.1925

Vertical projected emittance parameters at IP

sig = 11.9851+- 2.1605 um (0.0436) sigp = 1151.7620+- 9.9411 ur (433.0907) beta = 7610.9045+-1178.8637 mm (0.1006) alpha = 731.4027+- 113.2781 (0.0019)

Vertical projected emittance parameters at waist

L	=	0.0104 +-	0.0000 m
beta	=	0.0142 +-	0.0022 mn
sig	=	0.0164 +-	0.0026 um

- Dispersion correction in the FFS region with the Σ -knob QS1X-QS2X.
- The values of the β_x^* and β_y^* measured with the carbon wire scans were: 229 mm and 40 μ m (for an emittance of 18 pm) or 27 μ m (for an emittance of 12.5 pm \rightarrow measured in the DR).

20/11/2018

Summary of November 2018 run

- The goal of these first two shifts in November run was to match the optics used in February 2018.
- At the beginning of the owl shift the multi-OTR screens were not working \rightarrow they were recovered only for the day shift.
- The emittance measurements were inconsistent \rightarrow the emittance values were too large.
- The evaluation of the twiss parameters at the IP with the carbon wire scanner showed a β_x^* value smaller than the design (55 mm) and a divergence of 0.43 (β_y^* value of \approx 25 μ m \rightarrow the vertical emittance measured in the DR was 9.1 pm).

Summary of November 2018 run

• Summary of the optics matching

	Measured $oldsymbol{eta}_x^*$	Measured $oldsymbol{eta}_y^*$
December 2017	86 mm	$(\epsilon_y / \beta_y^* = 0.48)$ $\epsilon_y = 12.9 \text{ pm}$ 26.2 μ m
February 2018	103 mm	$(\epsilon_y / \beta_y^* = 0.43)$ $\epsilon_y = 12.5 \text{ pm}$ 25.3 μm
May 2018	229 mm	$(\epsilon_y / \beta_y^* = 0.45) \ \epsilon_y = 12.5 \ { m pm} \ 27.7 \ \mu{ m m}$
November 2018	55 mm	$(\epsilon_y / \beta_y^* = 0.43)$ $\epsilon_y = 9.1 \text{ pm}$ 21.2 μ m

20/11/2018

Conclusions

- During the second long tuning attempt of the $25\beta_x^* \times 0.25\beta_y^*$ FF lattice, the performance of the system in terms of beam size achieved was improved despite the shorter tuning time and the fact that nonlinear knobs were applied.
- These results highlight the supicions raised during the Dec17 operation about the applied optics.
- The tuning performance of the updated lattice optimized for the February 2018 run could be further improved with the use of all the 2nd order sextupole knobs and to use the octupoles for 3rd order correction to further reduce the σ_{γ}^{*} .
- The abscence of multi-OTR was an important limitation because it is very important for optics rematching and <x,y> coupling correction.
- The last tuning session ends on an incomplete tuning study for the exploration of the ultra-low β_y^* performance \rightarrow a whole week will be allocated to the study in December 2018 beam operation.

Thanks for the attention!

20/11/2018

Back-up Slides

20/11/2018

- The impact of the octupoles beam size at ultra-low β_{γ}^* is in the order of \approx 9-10 nm in simulation.
- The resolution of the beam size measurement at 30 degree mode is to large to observe octupolar correction.
- However the OCT1FF position scan gave us possible useful informations about the lattice:

- Horizontal offset of a normal octupole generates normal sextupolar field (can generate Y24 and Y46 aberrations).
- Vertical offset generates skew sextupolar field (can generate Y22, Y26, Y44 and Y66 aberrations).
- Possible mismatch of the linear optics with the normal sextupole strength applied for ultra-low β_{γ}^* .
- Same observations for the nominal optics $(10\beta_x^* \times 1\beta_y^*)$ for December 2017 operations.

December 2017 (modification in the 10x1 optics):

- At 30 degree mode the resolution of the beam size measurement is too large to observe the impact of the octupoles.
- Octupolar correction on the vertical beam size will observed only at 174 degree mode.

Measured at 30 degree mode (10x1 optics)

Measured at 174 degree mode (10x1 optics)

