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 EXperimental results:
- BPM calibration
- Dispersion Free Steering
- Intensity dependence studies using IPBMs
- Magnet roll/coupling correction

* Intensity dependence studies using Placet.

 Plans for ATF2 run in December 2018.
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Experimental results
BPM calibration
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BPM calibration

Charge states for measurements before and after BPM calibration
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75 .| Chiarge.=.0,606 10.ifter.calibration.... The charge is measured using an Integrated
Current Transformer (ICT). The comparison of
70 the evolution of the charges before and after

BPM calibration shows that they have similar
amplitudes and behaviors.
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http://pkorysko.web.cern.ch/runs_june2018_BPM_calibration_diff.html

Experimental results
Dispersion Free Steering
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Dispersion

Dispersion
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Dispersion Free Steering

New results from June 2018
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The dispersion is corrected using
only the steering magnets in the
extraction line.

The implemented code in the
machine gives good results in the
horizontal plane:

The measured dispersion fits really
well the target.



Dispersion Free Steering

New results from June 2018
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Experimental results

Intensity dependence studies
using IPBPMs
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Experimental results

Intensity dependence using IPBPMs

The goal was to measure the impact of an intensity increase on the beam |jitter at IP.
For each intensity the IPBPMs were recalibrated. The attenuation on the dipole signhals was

20dB. One should expect a resolution of [90-150] nm at the BPMs and a resolution of
[90-150]/sqrt(2) = [65-105] nm at the walist.

Location of IP BPMs

P

T
1
Quadrupole Servtupede e Skrw Quuaslrupude Cotroctor

Damping Ring

Bancd on fipare from G, Wikte ot al. (2014)

IPC IP IPB IPA
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Experimental results

Intensity dependence using IPBPMs

The goal was to measure the impact of an intensity increase on the beam jitter at IP.

For each intensity the IPBPMs were recalibrated. The attenuation on the dipole signals was
20dB. One should expect a resolution of [90-150] nm at the BPMs and a resolution of
[90-150]/sqrt(2) = [65-105] nm at the walist.

Average vertical beam position at IPB

R e The average vertical beam position shows a
E 10 1 quadratic correlation with the intensity at IPB
. e and IPC.
0
01 02 03 OI-‘t -ty((i; ee 7% This is not due to the known resolution

dependence with the intensity.
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Experimental results

Intensity dependence using IPBPMs

The goal was to measure the impact of an intensity increase on the beam |jitter at IP.

For each intensity the IPBPMs were recalibrated. The attenuation on the dipole signhals was
20dB. One should expect a resolution of [90-150] nm at the BPMs and a resolution of
[90-150]/sqrt(2) = [65-105] nm at the walist.

Position jitter at waist
0.28

2 027 .
: 00 . . The jitters at the waist were calculated using
5 024 . . . an interpolation of the position and angle at
8 0.3 the IPB and IPC.
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Intensity (e10) The position and angle jitters at the waist
don’t seem to have a strong correlation with

Angle jitter at waist the intensity.
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Experimental results

Intensity dependence using IPBSM

Intensi ty sCan Date: 2018/11/15 Time: 00:54:22
036 F
Fit results: A*exp(-(x/B)"~2/2)
03 L - g o5 - Modulation: 0.239 +/- 0.020
Center: 0.000 +/- 0.000
* sigma: 0.539 +/- 0.062

0.24
Chi2/ndf: 2.5275e+01 / 28
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Data file:
; : . _fringe 181115 005428.dat
0217 0.433 0.650 0.867
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Experimental results
Magnet roll/coupling
(early results)
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Experimental results

Magnet roll/coupling

The goal was to measure and correct the coupling due to quadrupole rolls.

COUp”ﬁ 1 ZViX Good
s 2 ZV2X Good
3 ZH1X Good
4 ZV3X Good
Y (um) 5 ZH2X Good
6 ZV4X Good
7 ZV5X Good
8 ZH3X Good
9 ZV6eX Good
o 10  ZH4X Good
11 zZv7X Good
BPM number Co‘;rector numb;r 12 ZH5X Good
13 Zv8X Good
Vertical orbit in 14 ZHeX Good
ATF2 line after 15 ZH7X Good
kicking 16 ZVoX Good
horizontally the 1; i:f;‘x zzz:
beam at ZH1X. | e oo
20  ZV11X Good
21  ZH10X Offline
22 ZHIFF Good 14
ZVIFF Good

N

BPM number



Experimental results

Magnet roll/coupling

The effect of a kick at ZH1FF (last steering magnet in ATF2, s=52.56m) on the vertical orbit is
shown on the following figure. The correction consists of finding the best combinaison of the
following magnets rolls (AQM13FF and AQM16FF in this case).

The best correction was obtained by rolling AQM16FF by +250urad and AQM13FF by -100urad.

I
e Before correction
s A fier correction
This correction
reduced the average
vertical orbit

(generated by
kicking horizontally

Y (um) at ZH1FF) by a factor
o 1 1 20.
ZH1FE The goal is to apply
- | this correction in an
v automatic way.

Glu 4L 50 B0 15
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Intensity dependence studies
using Placet

21st November 2018 ATF2 Workshop, KEK




Static effects

Simulation conditions

» Wakefields used: GdfdL simulations from A. Lyapin.

» Latest BPMs configuration with BPM resolution
(5um for striplines, 1um for CavBPMSs).

e 100 random seeds (machines).
 BBA correction applied: 1tol, DFS, WFS.

* |deal knobs used to correct the IP distribution:
<Y, X'>, <y y'> <y E>, <y X?> <y X*y'> <y xX*E>,
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Simulations conditions:
e Conditions from slide 17.
+ Misalignment of Quadrupoles, CavBPMs, Sextupoles.

50 T : :
+ 100pum misalignment
a8t -+ 75um misalignment
4+ 50um misalignment
— a6 25ym misalignment
E + Owm misalignment ¢ |
.g 44 T R N S S — .
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> e — g o S 1 !
38 e S s K
D R & e Ao e e +
R S
02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
Charge (el0)
The 100pm RMS misalignments increase the average
beam size
by 16.35% at N=2.0x10°and by 21.64% at N=1x10%°
21st November 2018 ATF2 Workshop, KEK

Static effects

Impact of misalignments
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Static effects

Impact of spurious multipoles

Simulations conditions:

« Conditions from slide 17.
+ Misalignment of Quadrupoles, CavBPMs, Sextupoles of 50um RMS.
+ Errors in the Quadrupoles and Sextupoles strengths of 1x10“.

HE Perfect multipoles
BB Spurious multipoles

20.0
17.5
15.0
42 12.5

§ 10.0

7.5
5.0t
2.5
0.0

B H B M n [ |
37.5 40.0 42.5 45.0 47.5 50.0 52.5
Vertical beam size (nm)

38 perfect machines provide a vertical beam size of at most 38nm
against 15 machines for the spurious multipoles case.
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Static effects

Impact of magnet rolls

Simulations conditions:

« Conditions from slide 17.
+ Roll error of 200urad RMS for BPMs, quadrupoles, sextupoles.

Effect of the magnets roll on the vertical IP beamsize
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The roll error increases the average beam size by
5.94% at N=1.0x10°and by 11.82% at N=1.0x10%*
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Static effects

Summary

1.0x10*
100pm (and 50um 200purad

misalignment)

16.35%* 4.33% 5.94%

21.64% 14.62% 11.82%
*Gy,ip, nominal + 1635% X O-y,ip, nominal = O-y,ip, 100pm, 2.0e9
with O, o nominal = S/ NM
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Dynamic effects

Simulation conditions

Wakefields used: GdfdL simulations from A. Lyapin.

Latest BPMs configuration with BPM resolution.

Misalignment of Quadrupoles, CavBPMs, Sextupoles of 100um RMS.

100 random seeds (machines).

BBA correction applied: 1tol, DFS, WFS.

200 pulses: initial position jitter of 0.1c,0r angle jitter of 0.10,
(With o, the angular divergence: 0,.=ve,/p,)

e |deal knobs used to correct the IP distribution:
<y,x’>, <y,y’>, <y,E>, <y,x’2>, <y,x’*y’>, <y,x’*E>,
21st November 2018 ATF?2 Workshop, KEK 22



Dynamic effects

Angle jitter

In this case, there are 100 machines with a 100pm RMS misalignment and 200 pulses/machine.

Vertical beam size at IP. 100pm misalignment, angle jitter 0.10,

100 machines, 200 pulses/machine

45.0 .
~ Each point of the plot
S
Saas represents the average of 100
(0] .
N machines and 200 pulses per
£ 440 machine.
3
E’ 43.5
:
> 43.0

42.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Charge (el0)
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Dynamic effects

Angle jitter

In this case, there are 100 machines with a 100pm RMS misalignment and 200 pulses/machine.

Vertical beam size at IP. 100pm misalignment, angle jitter 0.10,

100 machines, 200 pulses/machine
.0 .
;5 Each point of the plot
Saas \\ represents the average of 100
(0] .
N machines and 200 pulses per
£ 44.0 machine.
3
E’ 43.5
:
> 43.0
s o .
R R The distribution of all beam sizes
. _ Charge {e10) | at high charge shows that
Distribution of beam sizes at IP for 100 machines, 200pulses/machine - i
100um misaligment and 0.10, angle jitter | | are SOme mlsallgnment Seeds
\ o Jona® ol giving large beamsizes for all
500 - . .
pulses even with this good
400 correction schemes.
4§BOO ‘ ‘ /
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200 /
,
100 - b
" K 24
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Dynamic effects

Angle jitter

In this case, there are 100 machines with a 100pm RMS misalignment and 200 pulses/machine.

Vertical beam size at IP. 100pm misalignment, angle jitter 0.10,

100 machines, 200 pulses/machine
45.0 .
= Each point of the plot
Saas \\ represents the average of 100
(0] .
N machines and 200 pulses per
£ 44.0 machine.
3
E’ 43.5
:
> 43.0
s S .
R R The distribution of all beam sizes
. _ Charge (e10). | at high charge shows that
Distribution of beam sizes at IP for 100 machines, 200pulses/machine - i
100um misaligment and 0.10, angle jitter | | are Some mlsallgnment Seeds
SOO\ = 10010° cectrons | giving large beamsizes for all
pulses even with this good
400 correction schemes.
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Dynamic effects

Angle jitter - Summary

Distributi fb i IP for 100 hines, 200pulses/ hi . .
S o0um risaligment and 0.1, angle jitter, Gop 0100 For 100 machines with a 100um RMS
Average misalignment and 200 pulses with an initial
500 --=- 90th percentile angle jitter of O.lcry,
N = 2.0x10° The results are as follows:
400
§ 300 ‘ |
S
200
| | | 42.56nm 49.89nm
100 - § . ;
0 Ii ‘ l i

40 50 60 70 80 90 100
Vertical IP beam size

44.63nm 52.85nm

Distribution of beam sizes at IP for 100 machines, 200pulses/machine
100pum misaligment and 0.1, angle jitter, q=10x10°

o Average 1 *90% of the beam sizes are smaller than this value
---- 90th percentile

N = 10x10°

100{— | '

| " b
40 50 60 70 80 90 100
Vertical IP beam size
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Dynamic effects

Position jitter

Considering the same simulation conditions but with an intial position jitter of 0.1g,

Vertical beam size at IP. 100pm misalignment, position jitter 0.1,
100 machines, 200 pulses/machine
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O

Each point of the plot
represents the average of 100
machines and 200 pulses per

m size (nm
A NN
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. _ Charge {e10) | at high charge shows that
Distribution of beam sizes at IP for 100 machines, 200pulses/machine - i
100um misaligment and 0.10y position jitter | | are Some mlsallgnment Seeds
500 S giving large beamsizes for all
pulses even with this good
400 .
correction schemes.
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Dynamic effects

Position jitter

Considering the same simulation conditions but with an intial position jitter of 0.1g,

Vertical beam size at IP. 100pm misalignment, position jitter 0.1,
100 machines, 200 pulses/machine
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Each point of the plot
represents the average of 100
machines and 200 pulses per
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. _ Charge (e10). | at high charge shows that
Distribution of beam sizes at IP for 100 machines, 200pulses/machine - i
100um misaligment and 0.10y position jitter | | are Some mlsallgnment Seeds
500 e giving large beamsizes for all
pulses even with this good
400 -
correction schemes.

42300 | /
8

200 |

/
100 - A-/
i 28
40 50 60 70 80 90 100

Vertical IP beam size



Dynamic effects

Position jitter - Summary

Distribution of beam sizes at IP for 100 machines, 200pulses/machine . .
t 1t00um misaligment z:nd 0.10, position jitter, q=pZ.0x109 ‘ ‘ For 100 maChlneS Wlth a 100um RMS o
c00 average | Misalignment and 200 pulses with an initial
-==- 90th percentile position jitter of 0.1c0,
200 N = 2.0x10° The results are as follows:
42 300
8
200
100 42.79nm  50.56nm
0- AR T
>0 o0 e 80 %0 100 45.81nm 55.98nm

Vertical IP beam size

Distribution of beam sizes at IP for 100 machines, 200pulses/machine
100um misaligment and 0.1, position jitter, g=10x10°

Average * 90% of the beam sizes are smaller than this value
175 ---- 90th percentile

N = 10x10°

150
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Dynamic effects

Angle and position jitter

Comparing the standard deviation of the beam sizes due to the misalignment or due to the jitter:

350

300

250

Distribution of beam sizes at IP for 100 machines, 200pulses/machine

100um misaligment and 0.1, angle jitter, q=10x10°

Average )
---- 90th percentile

Position jitter
0.1c, 7.21nm 0.42nm

N = 2.0x10°

Position jitter
0.1g, 8.34nm 3.61nm

N = 10x10°
Angle jitter

0.10yp 7.20nm 0.08nm

N = 2.0x10°
Angle jitter

70
beam size

STD(misalignments)
STD(jitter)

21st November 2018

90 100 0.10,, 7.22nm 0.52nm
N = 10x10°

The error due to the misalignment is larger by a
factor 2.3 for the position jitter case at N = 10x10°
and by a factor 13 for the angle jitter at N = 10x10°.

ATF2 Workshop, KEK 30



Plans for December 2018 operations

Work on the Dispersion Free Steering code implementation and try it on the
ultra low beta optics during the CERN tuning week.

Implement and work on the Wakefield Free Steering code.

Pursue the study of the wakefield sources on movers

(Trying to assess the intial jitter of the ATF2 extraction line using the beam
orbit?).
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Conclusion and outlook

The BPMs calibration permits to have a more stable and reliable orbit.

The Dispersion Free Steering correction scheme gives good results in the
ATF2 extraction line.

The IPBPMs show some intensity dependence in the vertical position of the
beam at the IP.

Coupling downstream ATF2 was corrected by tilting quadrupoles. The goal
would be to do that in an automatic way.

The impact of static and dynamic effects has been analyzed and quantified.
Misalignments, incoming beam angle and position jitters have a large impact
on the beam size.

Outlook:

Simulate the effect of resistive walls in ATF2.

Measuring the incoming position and angle jitter in the ATF2.
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