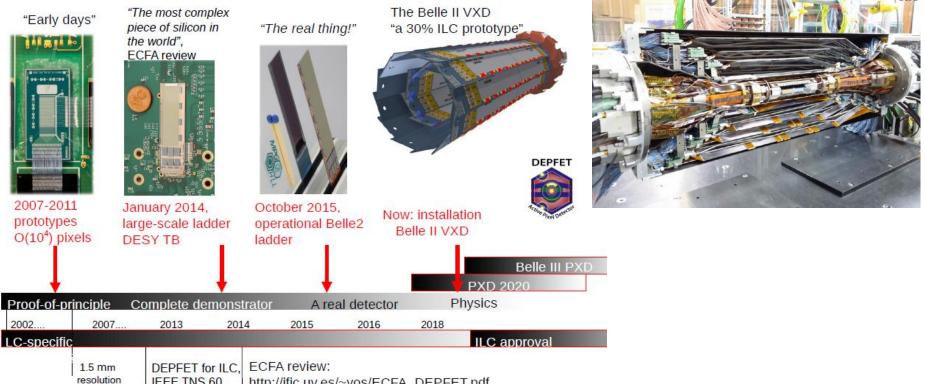

VXD and intermediate tracking Integration Status

A. Ishikawa, M. Vos, A. Besson

- News from R&D groups
- Beam background updates
- Costing
- Power consumption
- Cabling
- SIT
- Conclusion

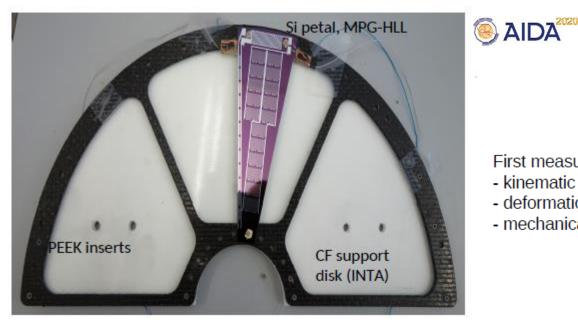


Challenge : meet the requirements all together

ILD Integration, Feb. 2019

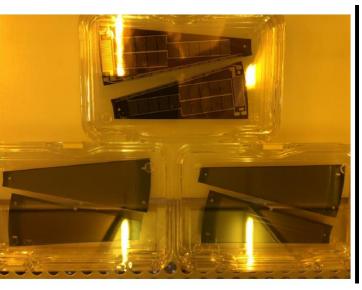
News from DEPFET

One-slide DEPFET history


- IEEE TNS 60 http://ific.uv.es/~vos/ECFA_DEPFET.pdf
 - Real experience gained for Belle II
 - Installation of vertex detector and preparation of PXD2020
 - ILC-specific activity has been 2nd priority
 - Approval required to for signficant renewed interest
 - · Thinking about Belle III has started
 - Advanced DEPFET and CMOS options pursued by the collaboration

ILD Integration, Feb. 2019

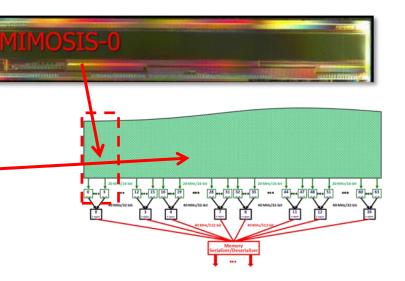
News from Forward disks


- A new mock up is being built (FTD1 & 2)
 - Thermo-mechanical properties
 - Planarity

Mock-up for FTD1 and 2 is being assembled at IFIC

New production at silicon lab of the Max Planck society in Munich

Petals arrived at IFIC in September 2018 and are currently being mounted on mock-up structure


First measurements look promising:

- kinematic mount absorb thermal expansion as expected
- deformations under power load and air-flow are O(5 $\mu m)$
- mechanical stability in stable conditions is much better

ILD Integration, Feb. 2019

News from CMOS Pixel Sensors

- MIMOSIS-0 prototype (2018)
 - 1st prototype for CBM experiment @ FAIR
 - Design adaptable to ILD
 - Ongoing tests
 - > Pixel dispersion, architecture
 - > Radiation hardness tests ongoing ($10^{14} n_{eq}/cm^2 \& 20 Mrad$)
- MIMOSIS-1 (2019) -
 - Full scale
 - Ongoing design
- CREMLINplus program (EU + Russia)
 - with DESY, CERN, JINR, FAIR, BINP, KINR, Frankfurt & IPHC
 - Telescope with MIMOSIS 1 or 2
 - > Double sided ladders & faster read-out time 100 μ s -> 5 μ s. w.r.t to Mimosa 26 (EUDET)
 - > Slightly degraded resolution compensated by double sided
- Long term R&D (with CERN)
 - Stitching -> reduce ladder overlap / reduce space between sensors
 - $\succ~~\sim150~\mu m$ to $\sim\!<\!50~\mu m$
 - Synergy with ALICE plans
 - 65 nm technology exploration
 - Mixed CMOS processes

Extension of MIMOSIS to ILC vertexing and tracking

⇒ PSIRA

Conservative approach

Minimize changes w.r.t. MIMOSIS

 \succ Keep TJ 0.18 μ m technology & a similar architecture

- 2 sub-systems targeted
 - Vertex detector & Silicon inner trackers (SIT @ ILD)

⇒ Finalize CPS ~2025

• Expected Performances

- − σ_{sp} ~4 µm ⇒Use double sided ⇒ σ_{sp} ~2.8 µm
 - > 22x22 μ m² \sim 20% better spatial resolution % ALPIDE (vertexing)
 - Faster = higher Power consumption
- Read-out time: 2-4 μ s (ILD-VXD) and 1 μ s (ILD-SIT)
- Single pixel address read-out = 50 ns
 - ➤ (with 20 MHz clock)
- Sustainable occupancy (~5 pixels/hits)
 - $> \sim 4$ hits/region/µs ~ 100 hits/cm²/µs

PSIBA	Matrix (512 x 1024)	Pixel: 22 x 22 µm ³ ion 1 512 phels Pixel Pixel Pixel	n2 Region 3 Region 64
Bias DACs Pixel Config. Management Registers	PE Driving & Cluster Fi	nding & Region RO 1 R RO	2 RRO3 RRO64
CMU Costrol Man agement Unit 12C	Sequencer	Data Formatting	Two options; 1. Continuous readout 2. Delayed readout
	40 MHz	Serialiser (8b/10b7)	Pad Ring

- Can one reach : Pitch ~ 18 x 18 μ m (σ_{sp} ~ 3 μ m) & r.o.time ~ 2-4 μ s ? – Doable with smaller feature sizes
- ⇒ PSIRA architecture already reaching 4-8 BX read-out time
- ⇒ Power vs read-out speed compromise
- ⇒ Avoiding power pulsing possible ?

Beam background

Beam background updates effects

Total VXD hits/BX

01m250_DBD_fieldX02

02m500 DBD fieldX02

NEW SIMULATIONS

LARGE, anti-DID 72_BEAMLIMITS_15v05_250A

LARGE, no anti-DID 71_BEAMLIMITS_15v03_250A

73 BEAMLIMITS3 15v05 250A

74_BEAMLIMITS2_s5v03_250A

75_BEAMLIMITS_s5v05_250A

76_BEAMLIMITS2_s5v05_250A

 $\sqrt{s} = 500 \text{ GeV}$:

43_akiya_15_500TDR

LARGE, anti-DID, lower momentum threshold

SMALL, no anti-DID, smaller maximum step length

LARGE, anti-DID, intermediate result, for illustration,

SMALL, anti-DID, smaller maximum step length

SMALL, anti-DID, new 250 GeV params

DBD

L12 EARLY

662.80

1276.50

1040.11

1050.50

970.11

827.67

738.40

713.89

1344.70

with new 250 GeV beam params

L12 LATE

34.00

126.50

1233.44

339.70

308.44

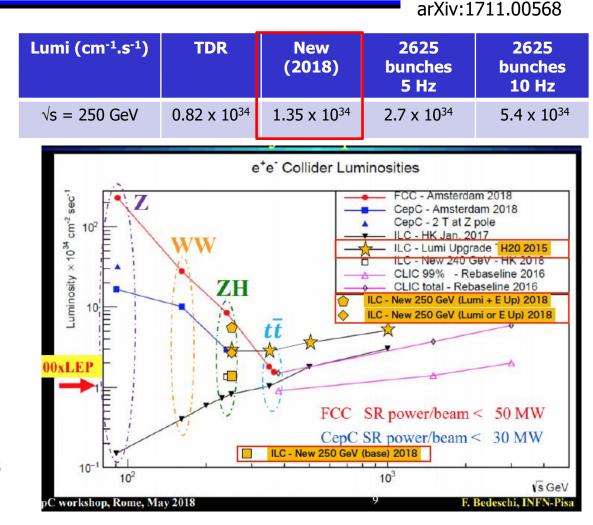
1386.00

401.20

420.00

579.50

• D. Jeans and Akiya beam background studies:


Large, 250 new params, anti-DID [I believe: (mean #hits/BX +/- bunch-by-bunch variation)										
Subsystem : VXD Layer 1: 7292 hits. hitsperBX = (810.2 +- 339.) hits/BX. (5.89 +- 2.471) hits/cm^2/BX. Layer 2: 4215 hits. hitsperBX = (468.3 +- 204.) hits/BX. (3.40 +- 1.488) hits/cm^2/BX.										
Layer 3: 906 hits. Layer 4: 746 hits. Layer 5: 279 hits. Layer 6: 266 hits.	hitsperBX = (100.6 +- 57.4) hits/BX. (0.16 +- 0.094) hits/cm^2/BX. hitsperBX = (82.88 +- 47.2) hits/BX. (0.13 +- 0.078) hits/cm^2/BX. hitsperBX = (31 +- 17.1) hits/BX. (0.03 +- 0.018) hits/cm^2/BX. hitsperBX = (29.56 +- 16.6) hits/BX. (0.03 +- 0.017) hits/cm^2/BX.									

- Now backscattered particles ~ 50-55% of total background (without antiDID)
- Anti-DID effect
 - Reduces only backscattered particles rate
 - ~ -35% reduction on total background
- Small geometry: small B field effect
- The safety margin for data flow/band width/power estimates: ~ 3-5
- Percent level occupancy can be reached
 - E.g.: safety factor of 5, BX ~500 ns, pitch ~22um, read-out time ~ 4 us, cluster multiplicity ~5

⇒ Background (DBD@500GeV) ~ Background(@250GeV with new L*, new lumi, with A-DID, bug corrected)
 ⇒ Anti-DID effect significant now but moderate.

⇒Large uncertainties remains (+bunch-by-bunch variations)

Luminosity options and beam background

- Luminosity $\propto (\delta_{bs})^{1/2}$ - affordable @ 250 GeV
 - ⇒ significant effect on #hits/BX

- 2 other options
 - # bunches: 1312 ⇒ 2625
 - − Repetition rate: 5 ⇒ 10 trains

⇒ no effect on #hits/BX

 \Rightarrow no effect on #hits/read-out if bunch time spacing remains the same (~ 500 ns)

 \Rightarrow significant effect (x4) on data flow per second.

ILD Integration, Feb. 2019

Data flux (New Background estimates @ \sqrt{s} = 250 GeV)

Layer	DBD occupancy (hits/cm²/BX)	Detector surface (mm²)	#hits/BX	#hits/read out	#hits/train	# hits/s	Data rate (Mbits/train)	Data rate (Mbits/s)	Data rate (Mbits/train) With safety factor of 3	Data rate (Mbits/s) With safety factor of 3
	@ √s = 250 GeV	Length x width x # ladders		assuming 4 μs i.e. 8 BX	Assuming 1312 bunches per train	Assuming 5 trains / s	Assuming 16 bits/pixel & 5 pixels/hit & 10 bits header = 100 bits/hit	Assuming 16 bits/pixel & 5 pixels/hit & 10 bits header = 100 bits/hit	Assuming 16 bits/pixel & 5 pixels/hit & 10 bits header = 100 bits/hit	Assuming 16 bits/pixel & 5 pixels/hit & 10 bits header = 100 bits/hit
0	5.89±2.47	125 x 11 x 10 = 13 750	810	6480	1062 K	5 314 K	106	530	318	1590
1	3.40± 1.49	125 x 11 x 10 = 13 750	470	3760	616 K	3 083 K	62	310	186	930
2	0.16±0.09	125 x 2 x 2.2 x 11 =60 500	97	776	127 К	636 K	13	65	39	195
3	0.13±0.08	125 x 2 x 2.2 x 11 =60 500	79	632	104 К	518 K	10	50	30	150
4	0.03 ± 0.02	125 x 2 x 2.2 x 17 =99 000	30	240	39 K	197 K	4	20	12	60
5	0.03 ± 0.02	125 x 2 x 2.2 x 17 =99 000	30	240	39 K	197 K	4	20	12	60
TOTAL		346 100 mm ² ~ 0.35 m ²	1516	12128	1 989 K	9 945 K	200	1 000	600	3 000

 - average raw data size per BX, event or train. (with or without safety factor on beam background included) Average size per BX : ~0.15 Mbits / BX ⇒ 0.45 Mbits / BX (with safety factor of 3) Average size per event (~8 BX) : ~1.2 Mbits/ readout ⇒ 3.6 Mbits / readout (with safety factor of 3) Average size per train : ~200 Mbits / train ⇒ 600 Mbits / train (with safety factor of 3) Average size per second: ~1000 Mbits / train ⇒ 3000 Mbits / second (with safety factor of 3)

Costing

Cost estimates and integration

- Added value:
 - Opportunity to identify issues and to revisit the design
- Sources:
 - STAR HFT, ALICE ITS upgrade and discussions with experts
- Assumptions
 - No contingency added
 - No R & D costs included
 - Preproduction runs included
 - Beam background and data flux staying below the estimated value x 5
 - Assumed:
 - ➤ 1 chip design for SIT
 - > 2 chip designs for the VXD (might be 1 or 3)
 - Chip Production yield (50%), Spares (20%)
 - Some topics needs more detailed studies
 - > (Faraday cage, installation, etc.)
- Uncertainties ~ 15 % (1 σ)
 - Evolution of the technology
 - Beam background background

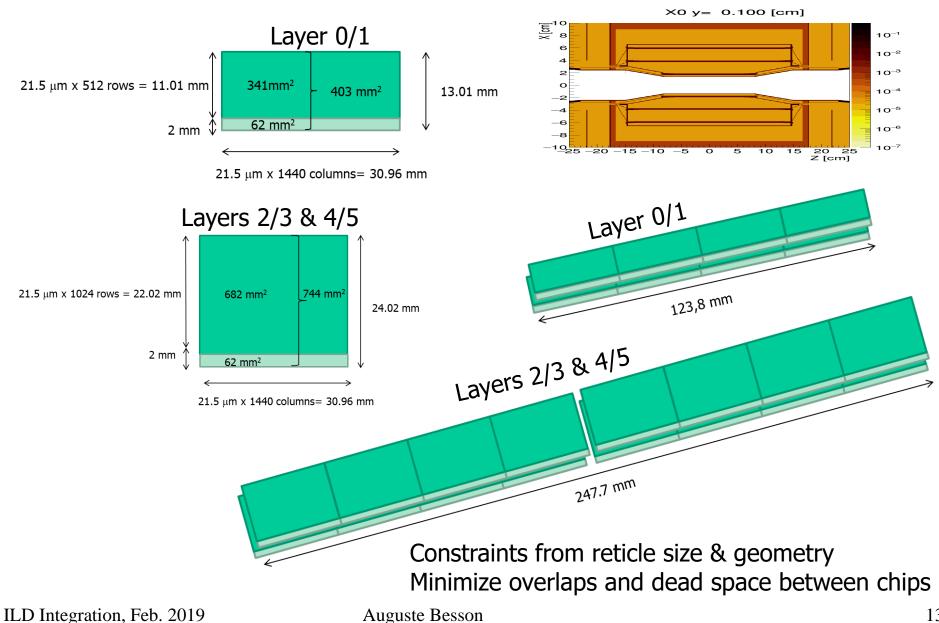
ILD VXD and SIT Costing Estimates

Auguste Besson¹, Marc Winter¹ ¹IPHC-CNRS, Straalsourg University, France

January 28, 2019

Abstrast This note commanism the root estimation performs if the ILD Varies Desarter (VXD) and a filters inner Thadar (SIT) with an averand CMOS technology. This last estimate was framed for the IDI (1). Thus estimation are based in our timised laweldegs at the time ing and in our indust maningary case. Owned, The final miniber should be considered that assuming it for other of a DIV.

Acronymes


- CPS = CMOS Pixel Sensors
- MIMOSIS = Family of chips being developped for CBM-MVD detector
- ULTIMATE 2 = Chip which equipped the STAIL HFT detector.
 ALPIDE = chip developed to equip ALICE-ITS spende detector.
- ALPIDE = thip developped to equip ALICE-ITS apgrade detection.
 PSIRA = Family of chip proposed to equip the VXD.
- VXD = H.D Vertex Detector.
- SIT = Silicon Inner Tracker
 ILD = International Larger Determined

1 Introduction

1.1 General remarks

• In the whole document, the unit used is the KalkGaron (KRUR). Most randown spin or extra tabilismi from order experiment and project aships which was the first end-norm physics experiments with (RCH). The first using which was the first end-norm physics experiments with (RCF) at the random physics and the 2004. The second one is the ALICE TTS approximation (RCF) at the random physics and which will be experipsed with ALICE there is a first end-normalized matching the approximation of the ALICE TTS approximation (RCF) end-normalized matching the experipsed with ALICE there is a first end-normalized matching the approximation of the approximation of

Chip dimensions & ladders

VXD dimensions

Figures per layers									
Layer	0	1	2	3	4	5			
Layer Radius (mm)	16	18	37	39	58	60			
Layer $ z max \ (mm)$	61.9	61.9	123.8	123.8	123.8	123.8			
Chip Pixel Number in X	1440	1440	1440	1440	1440	1440			
Chip Pixel Number in Y	512	512	1024	1024	1024	1024			
Chip Pixel PitchX (μm)	21.5	21.5	21.5	21.5	21.5	21.5			
Chip Pixel PitchY (μm)	21.5	21.5	21.5	21.5	21.5	21.5			
Chip Dimension X (mm) (sensitive area)	30.96	30.96	30.96	30.96	30.96	30.96			
Chip Dimension Y (mm) (sensitive area)	11.01	11.01	22.02	22.02	22.02	22.02			
Chip Dimension Y (mm) (non sensitive area)	2.0	2.0	2.0	2.0	2.0	2.0			
Chip Surface (mm^2) (sensitive area)	341	341	682	682	682	682			
Chip Surface (mm^2) (non sensitive area)	62	62	62	62	62	62			
Chip Surface (mm^2) (total)	403	403	744	744	744	744			
Ladder Length (mm) (sensitive area)	123.8	123.8	123.8	123.8	123.8	123.8			
Ladder Width (mm) (sensitive area)	11.01	11.01	22.02	22.02	22.02	22.02			
N chip per ladder on each side	4	4	4	4	4	4			
Layer Surface (cm^2) (sensitive area)	136.3	136.3	599.7	599.7	926.9	926.9			
N Chips Per Layer	40	40	88	88	136	136			
Total surface (cm^2) (sensitive area)			34	84					
Figures per e	double la	ayers							
	Laye	r 0/1	Laye	r 2/3		r 4/5			
N Chips in z	4	1	4 + 4	4 = 8		4 = 8			
N Ladders	1	0	2×11	= 22	2×17	7 = 34			
N Chips Per double Layer	8	0	17	76	27	72			
N Chips (per architecture)	8	0		44	48				
N Total Chips			52	28					

ILD Integration, Feb. 2019

Costs Estimate

More details	
in the costing document	

Detector surface (m^2)

Chip surface (mm^2)

Chips mounted # Chips to produce

Chips per wafer

Wafers produced

Chips produced

Pixels

Ladders

Layers

Chips per ladder

to Estimatos (VVD)						Domain		Item		Materi: Unit Cost		Manpower Costs	Total Costs	Notes	
ts Estimates (VXD)							Sensors	_	- · · · ·		omit Cost	1152	100	1252	
							Sensors		Masks		300	600	0	600	۵
								b	ank wafer	s	0.1	30	0	30	
								Qua	ity Assura	ance	2.4	30	0	30	
								Waf	er product	tion	3.2	192	0	192	ь
									Thining		0.5	30	0	30	c
••									Dicing		0.5	30	0	30	e
tails							Tests	Pi	obe statio	n	200	200	0	200	d
									Others			40	100	140	e
sting do	ncume	nt					Mechanics Ladders	Mark			0.5	452	500	952	
Sung ut	Junic	-110			1		Ladders	Mech	anical sup Gluing	oport	0.5	34 68	0	34 68	t
				ND Y					Others		1	0	100	100	
			1		•		Mechanics	Be sur	port and o	others		200	100	300	g
	-	۸ ۸	11						ssembling			50	200	250	h
	-17	141	1				Faraday cage					100	100	200	g
-	トレ						Electronics					486	400	886	
DH	vert terme						Flex cable	С	onstruction	n	0.7	140	100	240	j
~ ~ 	-								Gluing			100	50	150	ď
-									Bonding			80	20	100	ď
							Read-out	0	Tests		0.3	0 24	30 0	30 24	1
									otical cable			24	0	24 20	-
]	LD V	/XD		ILD	ALICE	STAR	ITS/VY	XD Ľ	TS/SIT	note		0	20	
	L0-L1	L2-1	L5	total	SIT	ITS	HFT	ratio		ratio		-	100	100	
urface (m^2)	$\simeq 0.03$	$\simeq 0$		$\simeq 0.35$	7	10	0.16	30		1.5		2	100	182	i
				$\simeq 0.55$				30				D	0	20	
ace (mm^2)	403	74	4	-	735	450	459	$\simeq 1$		$\simeq 1$		0	250	1020	
mounted	80	44	8	528	9000	24500	400	45		2.5	a	D	20	100	i
											ь	- 5	25 5	50 20	
to produce	192	107		1267	21600	58800	1920	45		2.5			50	350	
per wafer	45	22	2	-	22	45	$\simeq 50$					0	0	50	
s produced	12	48	2	60	1000	1300	$\simeq >75$				cd	0	0	150	
*												0	50	100	
produced	540	105	56	1596	22000	58800	3600					0	100	200	
ixels	60M	660	M	720M	8.2G	13G	360M					0	200	300	
adders	10	56		66	280 ?	192	40					D	200	250	
												0	0	50	
ayers	2	4		6	4	7	2					60	1450	4410	
per ladder	8	8		-	24/42	е	10				f				
							Assumed 2 eng 212 (inner) + 48 High unit costs	8 (outer) wafe							
С	ost		Se	ensors	Mec	hanics	Eletr	onics	Ser	vices	Ins	stall	ation	T	otal
$\frac{1152}{\text{Material}} \frac{1152}{1152} \frac{452}{1152}$			52	48	86	7	70		10	0	29	960			
	power			100		500	40			250		20			450
		R)		1252)52	88			020		300			410
TOTAL (kEUR) 1252 952					04	000		1020			00	0	-1.	110	

ILD Integration, Feb. 2019

Detector

VXD

Auguste Besson

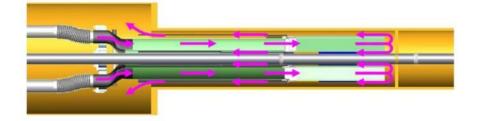
Power estimates

Power scheme for VTX-ILD (inner layer)

Hypothesis: 3 double sided layers (3483 cm²), PSIRA architecture (4 μ s / 4 μ m), DBD background @ $\sqrt{s} = 500$ GeV, no safety factor ILD Integration, Feb. 2019 Auguste Besson

	Power	: Results		Power Analog $(mW/chip)$ Power Bias $(mW/chip)$ Power PriorityEncoder $(mW/chip)$ Power DigitalPeriphery $(mW/chip)$				
•	Chip read-out speed – 2 ms - 4 ms		Po	Power PLL (<i>i</i> wer Serializer With er Serializer With M Power LVDS (<i>nW/chip)</i> Data (<i>mW</i>) No Data (<i>m</i>)	//chip		3.5 .06)
•	Power pulsing Power ON, no beau 	am during 1-3 ms		Period	F		ve Energy	Ľ
	 Leading param Power OFF: 10-30 	neter With NO P.P. D mW/chip	E be	E during train tween train (Power	ON)		mJ ~ 4 % mJ ~ 6 %	
•	Leading paramodeling paramod		E bet	E between train (Power OFF) 5740 mJ ~ 9				
	Lower occupancyPower is dominat			Layers	Relative Power			
•	Beam background r – DBD – DBD x 2			Layers 0/1	~ 10 %			
				Layers 2/3	~ 35%			
				Layers 4/5	~ 55 %			
		Beam background rate	Read-out speed	<power (no="" p.p.)<="" th=""><th>) <pc< th=""><th>ower></th><th>(P.P.)</th><th></th></pc<></th></power>) <pc< th=""><th>ower></th><th>(P.P.)</th><th></th></pc<>	ower>	(P.P.)	
			(μS)	(W)	Conserv	ative	Ambitious	
		DBD	4 μs	102 W				
		DBD	2 μs	122 W			10.11/	
		4 μs	107 W	7 W ~31 W		~12 W		
ILD	Integration, Feb. 2019	DBD x 2	2 μs	127 W				18

Power consumption

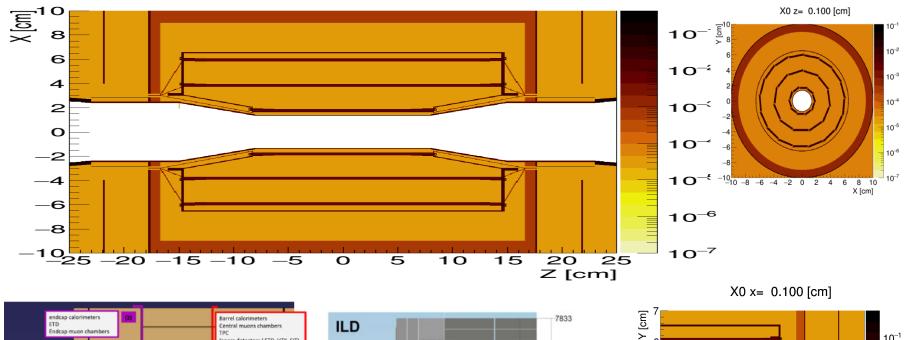

• Power estimates: Relatively robust when playing with different parameters

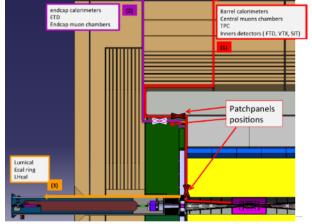
> 100-130 W range with NOPP, 10-30 W range with PP (uncertainties to be reduced with MIMOSIS)

- Valid for this architecture only.
- Air Cooling:
 - STAR HFT demonstrated that 23°C air flow cooling @ \sim 10 m/s could extract up to \sim 150 mW / cm² (\sim 350 W in total)

The STAR MAPS-based PiXeL Detector NIM, A 907 (2018) 60-80

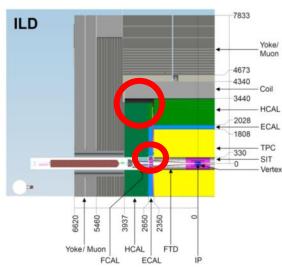
Caveat: 15 cm diameter flexible ducts was used (not possible for ILD)

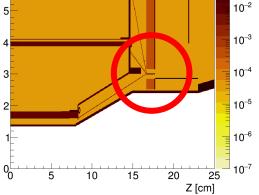



- Margin of improvement:
 - Optimize each layer ?
 - Smaller feature size ⇒ lower digital Power

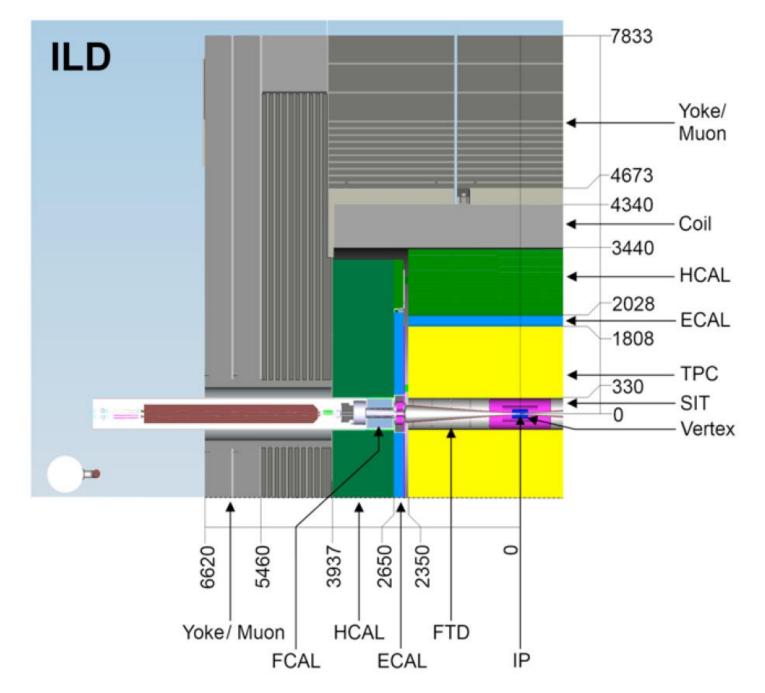
Cabling discussion

Read-out scheme: connectors/patchpanels


X0 y = 0.100 [cm]



C. Clerc et al. (2009)


ILD Integration, Feb. 2019

Auguste Besson

 10^{-1}

ILD Integration, Feb. 2019

Architecture assumed

• Direct translation of MIMOSIS (for CBM) design adapted to ILD

- What will/may change in the future
 - R & D towards faster read-out
 - Feature size technology
 - Stitching capabilities
 - Material budget optimization
- What still needs to be studied more extensively
 - Cooling
 - Mechanics
 - DAQ

Data encoding & rates (assuming 4 µs read-out time)

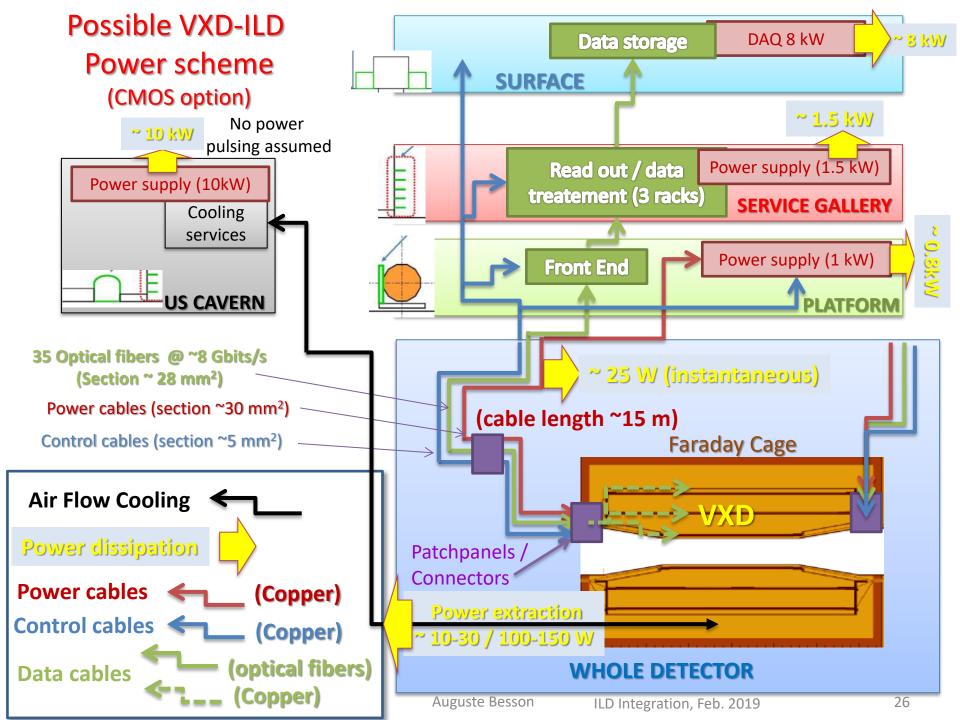
- Beam background hits (new lumi @ $\sqrt{s} = 250$ GeV); no safety factor.
- Total number of hits/read-out
 - Layer 0+1: ~ 12 000 hits
 - Layer 2+3: ~ 1400 hits
 - Layer 4+5: ~ 500 hits
 - Total hits (in 4 us) ~15 000 hits
- Data encoding:
 - 16 bits/pixel x 5 pixels/cluster + trailers/headers ~ 100 bits/hit
- Instantaneous data flux (No safety factor !)
 - Flux = 15 000 hits x 100 bits/hit / 4x10⁻⁶ s ~ 375 Gbits/s
- Optical fibers (assuming ~8 Gbits/s as a standard)
 - Ladders 0/1 -> 40 fibers
 - Ladders 2-3-4-5 (1 fiber/ladder) -> 28 fibers
 - ⇒ ~35 fibers on each side
 - Diameter: ~ 1 mm \Rightarrow 28 mm² ~ Section

•	Surf	aces:
	-	L0: ladders: $1.1 \times 12.5 \times 10 = 137.5 \text{ cm}^2$
	-	L1: ladders: 1.1 x 12.5 x 10 = 137.5 cm ²
	-	L2: ladders: $2.2 \times 12.5 \times 2 \times 11 = 605 \text{ cm}^2$
	-	L3: ladders: $2.2 \times 12.5 \times 2 \times 11 = 605 \text{ cm}^2$
	-	L4: ladders: 2.2 x 12.5 x 2 x 17 = 990 cm ²
	-	L5: ladders: 2.2 x 12.5 x 2 x 17 = 990 cm ²
	-	TOTAL : ladder surfaces = 3461 cm ²

Cables (no shielding included)

• Power consumption VXD (instantaneous)

INSTANTANEOUS POWER										
Power ON During Train per chip $(mW/chip)$	293.4	293.4	178.1	178.1	171.1	171.1				
Power ON Between Train per chip $(mW/chip)$	138.8	138.8	101.2	101.2	101.2	101.2				
Power OFF Between Train per chip $(mW/chip)$	10	10	10	10	10	10				
Power ON During Train per $cm^2 (mW/cm^2)$	82.21	82.21	49.92	49.92	47.95	47.95				
Power ON Between Train per $cm^2 (mW/cm^2)$	38.9	38.9	28.37	28.37	28.37	28.37				
Power OFF Between Train per cm^2 (mW/cm^2)	2.802	2.802	2.802	2.802	2.802	2.802				
Power ON During Train per layer $(W/layer)$	11.73	11.73	31.35	31.35	46.54	46.54				
Power ON Between Train per layer $(W/layer)$	5.553	5.553	17.81	17.81	27.53	27.53				
Power OFF Between Train per layer $(W/layer)$	0.4	0.4	1.76	1.76	2.72	2.72				
TOTAL : Surface= $3483 \ cm^2$; T	otal Pea	k Power	= 179.	3 W						


- ~ P_{tot} \sim 200 W ; @ 1.8 V \Rightarrow $I_{tot} \sim$ 100 A \Rightarrow I_{1side} = 50 A per end caps

• Power cables

- Assuming copper (Aluminium doesn't change the picture)
 - > Cable length L \sim 15 m
 - > $P_{diss}(cables) \sim 25 W \Rightarrow \Delta V = P_{diss}(cables) / I_{1side} = 0.5 V$
 - > R = ρ L / S = Δ V / I_{1side} \Rightarrow S = ρ L I_{1side} / Δ V ~ 30 mm² ~ Section

• Control cables (copper)

- Section ~ 5 mm²

SIT

Geometry							
R[mm]	Z[mm]	$\cos\theta$					
153	368	0.910					
300	644	0.902					

SIT

- Costing done in parallel
 - Much more open integration questions
 - ➤ More educated guesses...
 - PLUME ladders have to be revisited

- Geometry

 R[mm]
 Z[mm]
 cosθ

 153
 368
 0.910

 300
 644
 0.902
- Length / double sided ladder thickness / stiffness not the same
- ➤ Larger flex cable
- Stitching = improved stiffness ?
- > ALICE ITS upgrade:

Comparable dimensions and surfaces (not double sided though)

- Cabling / data flow schemes to be done
- Power (raw estimate with MIMOSIS architecture, 2 μs)
 - Distribution in parallel ? (ALICE = 1 cable / ladder)
 - Total surface: ~ 67 000 cm²
 - Very low occupancy w.r.t to the VXD
 - > <P> ~ 30 mW/cm² (NO power pulsing) \Rightarrow 2 kW \otimes
 - $> < P > ~ 3.5 \text{ mW/cm}^2$ (with power pulsing) $\Rightarrow 235 \text{ W}$
 - More space for air flow
 - Faster read-out (0.5 1 μ s range) would need more power.

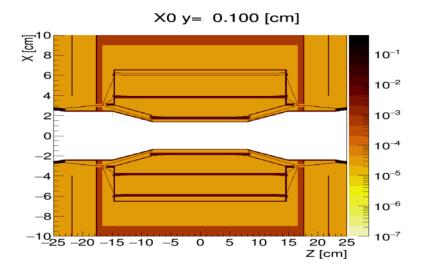
ILD Integration, Feb. 2019

SIT costing

Figures per lay	ers			
Layer	0	1	2	3
Layer Radius (mm)	153	155	298	300
Layer $ z max \ (mm)$	368	368	644	644
Chip Pixel Number in X	1152	1152	1152	1152
Chip Pixel Number in Y	800	800	800	800
Chip Pixel PitchX (μm)	26.6	26.6	26.6	26.6
Chip Pixel PitchY (μm)	27.5	27.5	27.5	27.5
Chip Dimension X (mm) (sensitive area)	30.64	30.64	30.64	30.64
Chip Dimension Y (mm) (sensitive area)	22.0	22.0	22.0	22.0
Chip Dimension Y (mm) (non sensitive area)	2.0	2.0	2.0	2.0
Chip Surface (mm^2) (sensitive area)	674	674	674	674
Chip Surface (mm^2) (non sensitive area)	61	61	61	61
Chip Surface (mm^2) (total)	735	735	735	735
Ladder Length (mm) (sensitive area)	367.7	367.7	643.4	643.4
Ladder Width (mm) (sensitive area)	22	22	22	22
N chip per ladder on each side	12	12	21	21
Layer Surface (cm^2) (sensitive area)	8089	8089	25500	25500
N Chips Per Layer	1200	1200	3780	3780
Total surface (cm^2) (sensitive area)		$\simeq 67$	7 000	
Figures per double	U			
		er 0/1		er $2/3$
N Chips in z	-	12 = 24		21 = 42
N Ladders	$\simeq 2 \times 10^{-10}$	50 = 100	$\simeq 2 \times 9$	90 = 180
N Chips Per double Layer	1	200	75	560
N Total Chips		$\simeq 9$	000	

More details in the costing document

PRELIMINARY


Detector	Cost	Sensors	Mechanics	Eletronics	Services	Installation	Total
VXD	Material	1152	452	486	770	100	2960
	Manpower	100	500	400	250	200	1450
	TOTAL (kEUR)	1252	952	886	1020	300	4410
SIT	Material	3820	760	1275	1580	110	7545
	Manpower	200	500	800	300	200	2000
	TOTAL (kEUR)	4020	1260	2075	1880	310	9545

ILD Integration, 1 co. 2017

Muguole Deboon

Open questions and conclusion

- Not covered
 - Cooling options
 - DAQ scheme
 - Mechanical support design
- Open questions
 - Cooling the beam pipe ?
 - Shielding cables to be evaluated
 - Faraday cage
 - Patch panels ⇒ detector opening ?
 - − Data cable ⇒ Connectors to optical fibers
- Integration:
 - A lot to be done \Rightarrow manpower issue
 - Waiting for March 7th...

Back up

Read-out strategies vs resolution/occupancy

٢	~5 µm ↔	Power	Time resolution	Spatial resolution	Advantages	Caveats				
		Fine pixels (e.g. FPCCD)								
Read-out between - trains	>25- <u>30 μm</u>	Low	1 complete train	~ 1 μm	Spatial Resolution Hit separation Beam background tagging capabilities ? (cluster shapes)	 ⇒x16 #pixels to read-out in 200ms ⇒No time stamping ⇒Occupancy issues ? 				
		In pixel circuitry to store hits with time stamping (e.g. chronopixels, SOI)								
		Low	Single or few bunches (>~ 0.5 μs)	>~ 5 µm	Hit time stamping Well suited to outer layers	⇒BX time stamping storage in conflict with granularity				
Ľ		Continuous read-out during train (e.g. DEPFET, CMOS): rolling shutter or priority encoding.								
Continuous read-out during	<u>217 μm</u>	High	Few to 10s bunches (5-50 μs)	~ 3 µm	Time & spatial resolution compromise	Power cycling mandatory ? ⇒F(Lorentz) ~ 10 ^s grams ⇒Distribute 100s Amps shortly before train ⇒heat cycles the ladders.				
train				access to new technologies anularity, etc.						
ILD Integration, Feb. 2019			Auguste Be	32						

Configura	tion 0					
N Trains						
InterTrain Durati		0 ms				
Train Duration = 1 ms; StandBy Duration =			OFF Du	ration =	196 ms	
Laver	0	1	2	3	4	5
Chip Pixel Number in X	1440	1440	1440	1440	1440	1440
Chip Pixel Number in Y		512	512	512	512	512
Chip Pixel PitchX (µm)		22	22	22	22	22
Chip Pixel PitchY (µm)		22	22	22	22	22
Chip Dimension X (mm)	31.68	31.68	31.68	31.68	31.68	31.68
Chip Dimension X (mm)		11.26	11.26	11.26	11.26	11.26
Chip Surface (mm ²) (active area)		356.8	356.8	356.8	356.8	356.8
Layer Radius (mm)		18	37	39	58	60
Ladder Length (mm) (active area)		126.7	126.7	126.7	126.7	126.7
Ladder Width (mm) (active area)	126.7 11.26	11.26	22.53	22.53	22.53	22.53
Ladder Number	10	10	22	22	34	34
Layer Surface (cm^2)	142.7	142.7	628	628	970.6	970.6
N Chips Per Layer	40	40	176	176	272	272
Read Out Time (µs)	4	4	4	4	4	4
Background Rate (hits/cm ² /BX)	6.3	4	0.25	0.21	0.04	0.04
Average Pixels Per Cluster	5	5	5	5	5	5
Power Analog (mW/chip)	49.22	49.22	49.22	49.22	49.22	49.22
Power Bias (mW/chip)	4.5	4.5	4.5	4.5	4.5	4.5
Power PriorityEncoder (mW/chip)	4.219	4.219	4.219	4.219	4.219	4.219
Power DigitalPeriphery (mW/chip)	64.27	64.27	64.27	64.27	64.27	64.27
Power PLL (mW/chip)	18.5	18.5	18.5	18.5	18.5	18.5
Power Serializer With Data (mW/chip)	86.06	86.06	8.438	8.438	1.406	1.406
Power Serializer With No Data (mW/chip)	0	0	0	0	0	0
Power LVDS (mW/chip)	56.4	56.4	18.8	18.8	18.8	18.8
INSTANTANEO			10.0	10.0	10.0	10.0
Power ON During Train per chip $(mW/chip)$	293.4	293.4	178.1	178.1	171.1	171.1
Power ON Between Train per chip $(mW/chip)$	138.8	138.8	101.2	101.2	101.2	101.2
Power OFF Between Train per chip $(mW/chip)$	100.0	10	101.2	101.2	101.2	101.2
Power ON During Train per cm^2 (mW/cm^2)	82.21	82.21	49.92	49.92	47.95	47.95
Power ON Between Train per cm^2 (mW/cm^2)	38.9	38.9	28.37	28.37	28.37	28.37
Power OFF Between Train per cm^2 (mW/cm^2)	2.802	2.802	2.802	2.802	2.802	2.802
Power ON During Train per layer (W/layer)	11.73	11.73	31.35	31.35	46.54	46.54
Power ON Between Train per layer $(W/layer)$	5.553	5.553	17.81	17.81	27.53	27.53
Power OFF Between Train per layer $(W/layer)$	0.4	0.4	1.76	1.76	2.72	2.72
TOTAL : Surface=3483 cm ² ; T					2.12	2.12
AVERAGE 1			- 115.			
MeanPower per chip NOPP (mW)	139.6	139.6	101.6	101.6	101.6	101.6
MeanPower per cm^2 NOPP (mW/cm^2)	39.12	39.12	28.47	28.47	28.46	28.46
MeanPower per layer NOPP (W/layer)	5.584	5.584	17.88	17.88	27.63	27.63
Mean Power total NOF		= 102.2	W	11.00	21.00	21.00
MeanPower per chip PP (mW)	13.35	13.35	12.21	12.21	12.17	12.17
MeanPower per cm^2 PP (mW/cm^2)	3.741	3.741	3.421	3.421	3.412	3.412
MeanPower per layer PP (W/layer)	0.534	0.534	2.149	2.149	3.311	3.311
Mean Power total PF		11.99 W		2.143	3.011	0.011
Energy per layer During Train (mJ/layer/train)	11.73	11.73	31.35	31.35	46.54	46.54
Energy per layer During StandBy(mJ/layer/train)	16.66	16.66	53.44	53.44	82.59	82.59
				345	533.1	533.1
Energy per laver Between Train(m.I/laver/train)	78.4	78.4	30.5	3/1-5		
Energy per layer BetweenTrain(mJ/layer/train) E During Train (mJ) = 179.3; E DuringStandBy	78.4 (ml) -	78.4 305.4 · 1	345 ? Retwo			