

ATF2 ultralow β^* optics

Renjun Yang CERN

ATF review meeting September 29, 2020

Ultralow β^* optics

- 0.25β_y* optics to demonstrate the tightest focusing possibility with a higher chromaticity beyond ILC & approaching CLIC
- Exploring the uncharted chromaticity territory; pushing the limits of ATF2

half β^* optics

- Halfway moderated step towards ultralow β* tuning; study the possible limits of beam focusing with higher chromaticity
- Achieving ~51 nm min. beam size in $25\beta_x*0.5\beta_y*$ optics; residual discrepancy from the design reveals possible larger static machine errors

[1] M. Patecki et al., Phy. Rev. Accel. Beams 19, 101001 (2016)[2] M. Patecki, PhD. thesis, Warsaw University of Technology, 2016

Simulation predictions

 Measured multipoles, static machine errors (misalignment, magnet strength error), dynamic imperfections evaluated from measurements

Major dynamic errors	
GM (fast)	ATF2 model
GM (slow)	<i>ATL</i> law <i>A</i> =27 μm²/(m.s)
Vibration of FD	10 (6.5) nm
Mover accuracy	<1 µm
Power supply setting accuracy	0.001% (FFS)
Initial beam jitters	10 %

Fast Ground motion generator:

- traveling wave
- **-** random *t*: 0<*t*<3 mins

$$\Delta y(t,s) = \sum_{i} \frac{1}{\sqrt{2}} a(w_i, k_i) \cos(-k_i s - w_i t + \phi_0)$$

a(w_i, k_i) amplitude from PSD function

[1] B. Bolzon et al., PAC09, TH5RFP086

[2] P. Bambade et al., PRST-AB, **13**, 042801 (2009)

[3] G. White, ATF2 optics design, Beam dynamic newsletter 61 (2013)

Simulation predictions

- Measured multipoles, static machine errors (misalignment, magnet strength error), dynamic imperfections evaluated from measurements
- Dedicated linear/nonlinear tuning knobs for ultralow β^* optics
- Single-shot IP beam size of ~32.2 nm, limited by 3rd-order chromaticity and aberrations; multi-shot beam size enlarged by beam jitter (~20 nm)

High-order aberrations

- ◆ 3rd-order terms become dominating when entering sub-25 nm region! —> correction using octupoles
- Two octupoles (larger & small, K₃L= 740 and 90 m⁻³), fabricated by CERN, have been placed in the FFS
- Higher probability of obtaining a sub-30 nm beam size thanks to the octupoles

Small beam size achievements

- The record smallest beam size of 41.1±0.7 nm was achieved in 10x1 optics in 2016 (2-bunch mode)
- IP beam size of less than 60 nm has been successfully demonstrated
- In ultralow β* optics, an IP beam size of <60 nm (min. as 50.1±0.6 nm) was obtained and stabilized over long periods in June 2019 (single-bunch)

Limitations to achieved beam sizes

- ~10 and ~20 nm gaps for 10x1 and ultralow β^* optics
- Contributions from beam jitter, beam size growth due to wakefield and diagnostic errors

$$\sigma_{y} = \frac{1}{2k_{y}} \sqrt{2[2k_{y}^{2}(\sigma_{y0}^{2} + \sigma_{dy}^{2} + \sigma_{w}^{2}) + \sum_{i} \log C_{i}]}$$

 σ_{dy} : beam position jitter (~20 nm w/o correction)

 $\sigma_w = wq$: beam size growth due to wakefield ($w \approx 125$ nm/nC from measurements) C_i : modulation reduction (~0.91 by analytical assessments)

Realistic FFS jitter + GM/Vibration $-> \sigma_{dy}$

Limitations to achieved beam sizes

• IPBSM beam-size correction $\sigma_y \rightarrow \sigma_{y0}$

- 50.1 nm@ultralow β^* optics (*Q*=0.16 nC, ε_y =12 pm) -> $\sigma^*_{y,0}$ ~35.5 nm close to simulation!
- 41.1nm@10x1 optics (ε_y =8.0 pm, σ_w ≈17.8/20.3 nm) —> $\sigma^*_{y,0}$ ~30 nm approaching $\sigma^*_{y,\beta}$!
 - Beam jitter, wakefield and IPBSM systematic errors play similar role!

 $\bullet \ \sigma_{y,0} \to \sigma_y$

23 nm —> 32.3 nm and 37 nm —> 40.0 nm for ultralow β^* and 10x1 optics, even with orbit stabilization (σ_{dy} =10 nm) !! Barriers to break towards goal beam sizes!

Momentum bandwidth

- Characterizing the preservation of design optics against marginal beamenergy errors and energy-spread blowup
- Probable distortions to energy-bandwidth measurement
 - ✓ Mismatched FFS optics —> realistic FFS optics model
 - ✓ Unsatisfactory IP tuning & larger σ^*_{ν} (residual 2nd-order terms) -> non-linear knobs correction; reproductions w/ comparable σ^*_{v0}
 - ✓ Chromatic emittances, Twiss and dispersions of extracted beam -> may deform horizontal bandwidth; not easy to measure/control

Momentum bandwidth

- Measurements@ultralow β* optics are roughly consistent with simulations based on operational optics model!
- The 10% bandwidth* is <0.2%, much smaller than CLIC and ILC (0.36% and ~0.6%), because the current optics is solely optimized for small-beam tuning at nominal energy
- Further measurements with optimized sextupole configurations, and in 10x1 optics are strongly recommended!

* Defined as a 10% increase of either horizontal or vertical IP spot size for mono-energetic beam.

Octupole studies

Demonstrations of octupole BBA methods

✓ Using dipole component (w/ IPBPMs) and quadrupole component (waist shift)

• Not yet observed beam-size reduction by the octupoles (poor BBA? too large σ_y^* ?)

Summary

Achievements

- Small beam sizes of less than 60 nm (min. ~50 nm) have been obtained in both half β^* and ultralow β^* optics
- BBA strategies for the new installed octupoles have been evaluated
- Momentum bandwidth has been demonstrated in ultralow β^* optics

Limitations & solutions to small-beam tuning

- Vertical IP position jitter (~20 nm) -> FB/FF
- Wakefield effects (125 nm/nC) -> FB & wakefield compensation
- Systematic diagnostic errors —> modulation corrections (jitter-free?)
- Possible larger multipoles of FD quads. —> new measurements
- + consecutive dedicated operations for tuning (1-2 weeks)
- ◆ Far future (w/ ATF3)...
 - + Moving to $10\beta_x^*0.25\beta_y^*$ and $1\beta_x^*0.25\beta_y^*$ optics
 - New optics with long L* (modifying IP configurations)

Thank you! Question?